Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102859
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAkimova, E. N.en
dc.contributor.authorBersenev, A. Yu.en
dc.contributor.authorDeikov, A. A.en
dc.contributor.authorKobylkin, K. S.en
dc.contributor.authorKonygin, A. V.en
dc.contributor.authorMezentsev, I. P.en
dc.contributor.authorMisilov, V. E.en
dc.date.accessioned2021-08-31T15:05:43Z-
dc.date.available2021-08-31T15:05:43Z-
dc.date.issued2021-
dc.identifier.citationA survey on software defect prediction using deep learning / E. N. Akimova, A. Yu. Bersenev, A. A. Deikov, et al. — DOI 10.3390/math9111180 // Mathematics. — 2021. — Vol. 9. — Iss. 11. — 1180.en
dc.identifier.issn22277390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107438889&doi=10.3390%2fmath9111180&partnerID=40&md5=a27f47977f2ad2a7ad750d410de74db8
dc.identifier.otherhttps://www.mdpi.com/2227-7390/9/11/1180/pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102859-
dc.description.abstractDefect prediction is one of the key challenges in software development and programming language research for improving software quality and reliability. The problem in this area is to properly identify the defective source code with high accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed throughout history. The recent breakthrough in machine learning technologies, especially the development of deep learning techniques, has led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for defect prediction. We analyse the recent works on the topic, study the methods for automatic learning of the semantic and structural features from the code, discuss the open problems and present the recent trends in the field. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectANOMALY DETECTIONen
dc.subjectCODE UNDERSTANDINGen
dc.subjectDEEP LEARNINGen
dc.subjectDEFECT PREDICTIONen
dc.subjectNEURAL NETWORKSen
dc.subjectPROGRAM ANALYSISen
dc.titleA survey on software defect prediction using deep learningen
dc.typeReviewen
dc.typeinfo:eu-repo/semantics/reviewen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math9111180-
dc.identifier.scopus85107438889-
local.contributor.employeeAkimova, E.N., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeBersenev, A.Yu., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeDeikov, A.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeKobylkin, K.S., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeKonygin, A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation
local.contributor.employeeMezentsev, I.P., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeMisilov, V.E., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation, Institute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.issue11-
local.volume9-
dc.identifier.wos000660259900001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of RAS, S. Kovalevskaya Street 16, Ekaterinburg, 620108, Russian Federation
local.contributor.departmentInstitute of Radioelectronics and Information Technology, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.identifier.pure22106357-
local.identifier.pure7858c6fd-60db-4336-9442-b86674a3a3aeuuid
local.description.order1180-
local.identifier.eid2-s2.0-85107438889-
local.identifier.wosWOS:000660259900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85107438889.pdf521,26 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.