Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102746
Title: On expressive power of basic modal intuitionistic logic as a fragment of classical FOL
Authors: Olkhovikov, G. K.
Issue Date: 2017
Publisher: Elsevier Ltd
Citation: Olkhovikov G. K. On expressive power of basic modal intuitionistic logic as a fragment of classical FOL / G. K. Olkhovikov. — DOI 10.1016/j.jal.2016.11.036 // Journal of Applied Logic. — 2017. — Vol. 21. — P. 57-90.
Abstract: The modal characterization theorem by J. van Benthem characterizes classical modal logic as the bisimulation invariant fragment of first-order logic. In this paper, we prove a similar characterization theorem for intuitionistic modal logic. For this purpose we introduce the notion of modal asimulation as an analogue of bisimulations. The paper treats four different fragments of first-order logic induced by their respective versions of Kripke-style semantics for modal intuitionistic logic. It is shown further that this characterization can be easily carried over to arbitrary first-order definable subclasses of classical first-order models. © 2016 Elsevier B.V.
Keywords: BISIMULATION
INTUITIONISTIC LOGIC
MODAL LOGIC
MODEL THEORY
PROPOSITIONAL LOGIC
VAN BENTHEM'S THEOREM
CHARACTERIZATION
FAULT TOLERANCE
FORMAL LOGIC
SEMANTICS
BENTHEM'S THEOREM
BISIMULATIONS
INTUITIONISTIC LOGIC
MODAL LOGIC
MODEL THEORY
PROPOSITIONAL LOGIC
COMPUTER CIRCUITS
URI: http://hdl.handle.net/10995/102746
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85008324007
PURE ID: 1620769
337aa9d1-c4ee-44ce-9607-56c398dada30
ISSN: 15708683
DOI: 10.1016/j.jal.2016.11.036
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85008324007.pdf689,06 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.