Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102738
Title: Reduction of ZrO2during SNF Pyrochemical Reprocessing
Authors: Nikolaev, A.
Suzdaltsev, A.
Pavlenko, O.
Zaikov, Y.
Tatyana, Kurennykh
Vykhodets, V.
Issue Date: 2021
Publisher: IOP Publishing Ltd
Citation: Reduction of ZrO2during SNF Pyrochemical Reprocessing / A. Nikolaev, A. Suzdaltsev, O. Pavlenko, et al. — DOI 10.1149/1945-7111/abe8be // Journal of the Electrochemical Society. — 2021. — Vol. 168. — Iss. 3. — 036506.
Abstract: Reduction of ZrO2 by lithium during electrolysis of LiCl-KCl-Li2O melt at 650 C was studied using a set of physicochemical methods of analysis. Influence of ZrO2 in the space near a molybdenum cathode on the kinetics of the cathode process was established. Possible variations of the electrode reaction associated with the zirconium reduction were proposed. The appearance of ZrO2 in the cathode space resulted in consumption of reduced lithium and in increase in the potential relaxation time of the molybdenum cathode after cathode polarization. Long-term galvanic impulse electrolysis of LiCl-KCl-Li2O melt at 650 C was carried out using the molybdenum cathode which was immersed into the ZrO2 powder. According to the X-ray fluorescence analysis as well as the method of nuclear reactions the reduction product was presented by the ZrO2, Li2ZrO3, Zr3O phases. Additionally, by alloying the reduction product with tin, the ZrO2 reduction degree to metallic zirconium was estimated, which was close to zero. It was assumed that the main pathway for the appearance of the metallic zirconium in the ZrO2 reduction product during electrolysis of the LiCl-KCl-Li2O melt was direct electroreduction of dissolved zirconium in the melt. © 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
Keywords: CATHODES
CHLORINE COMPOUNDS
ELECTROLYSIS
ELECTROLYTIC REDUCTION
FLUORESCENCE
LITHIUM
LITHIUM ALLOYS
LITHIUM COMPOUNDS
MOLYBDENUM
NUCLEAR FUEL REPROCESSING
NUCLEAR REACTIONS
ZIRCALOY
ZIRCONIA
ZIRCONIUM
CATHODE POLARIZATION
ELECTRO REDUCTION
ELECTRODE REACTIONS
PHYSICOCHEMICAL METHODS
POTENTIAL RELAXATION
PYROCHEMICAL REPROCESSING
REDUCTION PRODUCTS
X RAY FLUORESCENCE ANALYSIS
POTASSIUM COMPOUNDS
URI: http://hdl.handle.net/10995/102738
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85103290568
PURE ID: 21182076
820972f3-f8a0-47d4-a973-192d33c8fc9c
ISSN: 134651
DOI: 10.1149/1945-7111/abe8be
metadata.dc.description.sponsorship: The work was carried out within the state assignment of Ministry of Sciences and Higher Education of Russian Federation (theme No AAAA-A16-116051110162-3). Nuclear reaction analysis was performed at the Institute of Metal Physics of the UB RAS within the state assignment of Ministry of Sciences and Higher Education of Russian Federation (theme Function No AAAA-A19-119012990095-0). Atomic emission analysis was conducted on the equipment of the Composition of Compounds the Shared Access Centre of the Institute of High Temperature Electrochemistry of the UB RAS.
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85103290568.pdf1,51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.