Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102689
Название: | Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka–Volterra model Стохастическая чувствительность квазипериодических и хаотических аттракторов дискретной модели Лотки–Вольтерры |
Авторы: | Belyaev, A. V. Perevalova, T. V. |
Дата публикации: | 2020 |
Издатель: | Udmurt State University |
Библиографическое описание: | Belyaev A. V. Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka–Volterra model / A. V. Belyaev, T. V. Perevalova. — DOI 10.35634/2226-3594-2020-55-02 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 19-32. |
Аннотация: | The aim of the study presented in this article is to analyze the possible dynamic modes of the deterministic and stochastic Lotka–Volterra model. Depending on the two parameters of the system, a map of regimes is constructed. Parametric areas of existence of stable equilibria, cycles, closed invariant curves, and also chaotic attractors are studied. The bifurcations such as the period doubling, Neimark–Sacker and the crisis are described. The complex shape of the basins of attraction of irregular attractors (closed invariant curve and chaos) is demonstrated. In addition to the deterministic system, the stochastic system, which describes the influence of external random influence, is discussed. Here, the key is to find the sensitivity of such complex attractors as a closed invariant curve and chaos. In the case of chaos, an algorithm to find critical lines giving the boundary of a chaotic attractor, is described. Based on the found function of stochastic sensitivity, confidence domains are constructed that allow us to describe the form of random states around a deterministic attractor. © Solid State Technology.All rights reserved. |
Ключевые слова: | CHAOS CLOSED INVARIANT CURVE POPULATION DYNAMICS STOCHASTIC SENSITIVITY |
URI: | http://elar.urfu.ru/handle/10995/102689 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 42949298 |
Идентификатор SCOPUS: | 85093890670 |
Идентификатор WOS: | 000547994700002 |
Идентификатор PURE: | 13200043 |
ISSN: | 22263594 |
DOI: | 10.35634/2226-3594-2020-55-02 |
Сведения о поддержке: | This study was supported by Russian Science Foundation, grant no. 16–11–10098. |
Карточка проекта РНФ: | 16-11-10098 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85093890670.pdf | 88,99 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.