Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102689
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBelyaev, A. V.en
dc.contributor.authorPerevalova, T. V.en
dc.date.accessioned2021-08-31T15:04:55Z-
dc.date.available2021-08-31T15:04:55Z-
dc.date.issued2020-
dc.identifier.citationBelyaev A. V. Stochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka–Volterra model / A. V. Belyaev, T. V. Perevalova. — DOI 10.35634/2226-3594-2020-55-02 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 19-32.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093890670&doi=10.35634%2f2226-3594-2020-55-02&partnerID=40&md5=1b1ea3160d1481b8f799942520036f63
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102689-
dc.description.abstractThe aim of the study presented in this article is to analyze the possible dynamic modes of the deterministic and stochastic Lotka–Volterra model. Depending on the two parameters of the system, a map of regimes is constructed. Parametric areas of existence of stable equilibria, cycles, closed invariant curves, and also chaotic attractors are studied. The bifurcations such as the period doubling, Neimark–Sacker and the crisis are described. The complex shape of the basins of attraction of irregular attractors (closed invariant curve and chaos) is demonstrated. In addition to the deterministic system, the stochastic system, which describes the influence of external random influence, is discussed. Here, the key is to find the sensitivity of such complex attractors as a closed invariant curve and chaos. In the case of chaos, an algorithm to find critical lines giving the boundary of a chaotic attractor, is described. Based on the found function of stochastic sensitivity, confidence domains are constructed that allow us to describe the form of random states around a deterministic attractor. © Solid State Technology.All rights reserved.en
dc.description.sponsorshipThis study was supported by Russian Science Foundation, grant no. 16–11–10098.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10098en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectCHAOSen
dc.subjectCLOSED INVARIANT CURVEen
dc.subjectPOPULATION DYNAMICSen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.titleStochastic sensitivity of quasiperiodic and chaotic attractors of the discrete Lotka–Volterra modelen
dc.titleСтохастическая чувствительность квазипериодических и хаотических аттракторов дискретной модели Лотки–Вольтеррыru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi42949298-
dc.identifier.doi10.35634/2226-3594-2020-55-02-
dc.identifier.scopus85093890670-
local.contributor.employeeBelyaev, A.V., Ural Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.contributor.employeePerevalova, T.V., Ural Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.description.firstpage19-
local.description.lastpage32-
local.volume55-
dc.identifier.wos000547994700002-
local.contributor.departmentUral Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.contributor.departmentUral Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.identifier.pure13200043-
local.identifier.eid2-s2.0-85093890670-
local.fund.rsf16-11-10098-
local.identifier.wosWOS:000547994700002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85093890670.pdf88,99 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.