Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102491
Title: Drawing permutations with few corners
Authors: Bereg, S.
Holroyd, A. E.
Nachmanson, L.
Pupyrev, S.
Issue Date: 2013
Publisher: Springer Verlag
Citation: Drawing permutations with few corners / S. Bereg, A. E. Holroyd, L. Nachmanson, et al. — DOI 10.1007/978-3-319-03841-4_42 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2013. — Vol. 8242 LNCS. — P. 484-495.
Abstract: A permutation may be represented by a collection of paths in the plane. We consider a natural class of such representations, which we call tangles, in which the paths consist of straight segments at 45 degree angles, and the permutation is decomposed into nearest-neighbour transpositions. We address the problem of minimizing the number of crossings together with the number of corners of the paths, focusing on classes of permutations in which both can be minimized simultaneously. We give algorithms for computing such tangles for several classes of permutations. © 2013 Springer International Publishing Switzerland.
Keywords: ARTIFICIAL INTELLIGENCE
COMPUTER SCIENCE
COMPUTERS
MINIMIZING THE NUMBER OF
NEAREST NEIGHBOUR
DRAWING (GRAPHICS)
URI: http://elar.urfu.ru/handle/10995/102491
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84891875301
PURE ID: 921600
8ff3400a-7d9e-4cae-ba30-bf395412895e
ISSN: 3029743
ISBN: 9783319038407
DOI: 10.1007/978-3-319-03841-4_42
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84891875301.pdf337,32 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.