Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102377
Title: | Pressure-driven metal-insulator transition in BiFeO3 from dynamical mean-field theory |
Authors: | Shorikov, A. O. Lukoyanov, A. V. Anisimov, V. I. Savrasov, S. Y. |
Issue Date: | 2015 |
Publisher: | American Physical Society |
Citation: | Pressure-driven metal-insulator transition in BiFeO3 from dynamical mean-field theory / A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, et al. — DOI 10.1103/PhysRevB.92.035125 // Physical Review B - Condensed Matter and Materials Physics. — 2015. — Vol. 92. — Iss. 3. — 035125. |
Abstract: | A metal-insulator transition (MIT) in BiFeO3 under pressure was investigated by a method combining generalized gradient corrected local density approximation with dynamical mean-field theory (GGA+DMFT). Our paramagnetic calculations are found to be in agreement with the experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures R3c, Pbnm, and Pm3¯m. At ambient pressure in the R3c phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both R3c and Pbnm phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the Pbnm phase is 25-33 GPa, which agrees well with the experimental observations. The high-pressure and -temperature Pm3¯m phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes the LS state at 33 GPa, where a Pbnm to Pm3¯m transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the Pbnm structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data. ©2015 American Physical Society. |
URI: | http://elar.urfu.ru/handle/10995/102377 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84937921605 |
WOS ID: | 000357856100003 |
PURE ID: | 9221258b-1c93-438d-9efc-80ed97a12000 325560 |
ISSN: | 10980121 |
DOI: | 10.1103/PhysRevB.92.035125 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84937921605.pdf | 214,69 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.