Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102324
Название: | On the number of synchronizing colorings of digraphs |
Авторы: | Gusev, V. V. Szykuła, M. |
Дата публикации: | 2015 |
Издатель: | Springer Verlag |
Библиографическое описание: | Gusev V. V. On the number of synchronizing colorings of digraphs / V. V. Gusev, M. Szykuła. — DOI 10.1007/978-3-319-22360-5_11 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9223. — P. 127-139. |
Аннотация: | We deal with k-out-regular directed multigraphs with loops (called simply digraphs). The edges of such a digraph can be colored by elements of some fixed k-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with n vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 1 − 1/kd, for every d ≥ 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 1 − 1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k = 2. © Springer International Publishing Switzerland 2015. |
Ключевые слова: | AUTOMATA THEORY COLORING GRAPH THEORY SYNCHRONIZATION EXPERIMENTAL INVESTIGATIONS K ELEMENTS MULTIGRAPHS PRIMITIVE DIGRAPHS DIRECTED GRAPHS |
URI: | http://elar.urfu.ru/handle/10995/102324 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 84951745267 |
Идентификатор PURE: | 569188 bc9d385a-ae4b-418f-b68c-0e1b48beaee2 |
ISSN: | 3029743 |
ISBN: | 9783319223599 |
DOI: | 10.1007/978-3-319-22360-5_11 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84951745267.pdf | 189,72 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.