Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102324
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGusev, V. V.en
dc.contributor.authorSzykuła, M.en
dc.date.accessioned2021-08-31T15:03:09Z-
dc.date.available2021-08-31T15:03:09Z-
dc.date.issued2015-
dc.identifier.citationGusev V. V. On the number of synchronizing colorings of digraphs / V. V. Gusev, M. Szykuła. — DOI 10.1007/978-3-319-22360-5_11 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9223. — P. 127-139.en
dc.identifier.isbn9783319223599-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84951745267&doi=10.1007%2f978-3-319-22360-5_11&partnerID=40&md5=8d42001eea4ea86a4268b2962e87ca9e
dc.identifier.otherhttp://arxiv.org/pdf/1508.02133m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102324-
dc.description.abstractWe deal with k-out-regular directed multigraphs with loops (called simply digraphs). The edges of such a digraph can be colored by elements of some fixed k-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with n vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 1 − 1/kd, for every d ≥ 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 1 − 1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k = 2. © Springer International Publishing Switzerland 2015.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectAUTOMATA THEORYen
dc.subjectCOLORINGen
dc.subjectGRAPH THEORYen
dc.subjectSYNCHRONIZATIONen
dc.subjectEXPERIMENTAL INVESTIGATIONSen
dc.subjectK ELEMENTSen
dc.subjectMULTIGRAPHSen
dc.subjectPRIMITIVE DIGRAPHSen
dc.subjectDIRECTED GRAPHSen
dc.titleOn the number of synchronizing colorings of digraphsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-319-22360-5_11-
dc.identifier.scopus84951745267-
local.contributor.employeeGusev, V.V., ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium, Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeSzykuła, M., Institute of Computer Science, University of Wrocław, Wrocław, Poland
local.description.firstpage127-
local.description.lastpage139-
local.volume9223-
local.contributor.departmentICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.departmentInstitute of Computer Science, University of Wrocław, Wrocław, Poland
local.identifier.pure569188-
local.identifier.purebc9d385a-ae4b-418f-b68c-0e1b48beaee2uuid
local.identifier.eid2-s2.0-84951745267-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84951745267.pdf189,72 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.