Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102324
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gusev, V. V. | en |
dc.contributor.author | Szykuła, M. | en |
dc.date.accessioned | 2021-08-31T15:03:09Z | - |
dc.date.available | 2021-08-31T15:03:09Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Gusev V. V. On the number of synchronizing colorings of digraphs / V. V. Gusev, M. Szykuła. — DOI 10.1007/978-3-319-22360-5_11 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9223. — P. 127-139. | en |
dc.identifier.isbn | 9783319223599 | - |
dc.identifier.issn | 3029743 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951745267&doi=10.1007%2f978-3-319-22360-5_11&partnerID=40&md5=8d42001eea4ea86a4268b2962e87ca9e | |
dc.identifier.other | http://arxiv.org/pdf/1508.02133 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102324 | - |
dc.description.abstract | We deal with k-out-regular directed multigraphs with loops (called simply digraphs). The edges of such a digraph can be colored by elements of some fixed k-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with n vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 1 − 1/kd, for every d ≥ 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 1 − 1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k = 2. © Springer International Publishing Switzerland 2015. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | AUTOMATA THEORY | en |
dc.subject | COLORING | en |
dc.subject | GRAPH THEORY | en |
dc.subject | SYNCHRONIZATION | en |
dc.subject | EXPERIMENTAL INVESTIGATIONS | en |
dc.subject | K ELEMENTS | en |
dc.subject | MULTIGRAPHS | en |
dc.subject | PRIMITIVE DIGRAPHS | en |
dc.subject | DIRECTED GRAPHS | en |
dc.title | On the number of synchronizing colorings of digraphs | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/978-3-319-22360-5_11 | - |
dc.identifier.scopus | 84951745267 | - |
local.contributor.employee | Gusev, V.V., ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium, Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federation | |
local.contributor.employee | Szykuła, M., Institute of Computer Science, University of Wrocław, Wrocław, Poland | |
local.description.firstpage | 127 | - |
local.description.lastpage | 139 | - |
local.volume | 9223 | - |
local.contributor.department | ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium | |
local.contributor.department | Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg, Russian Federation | |
local.contributor.department | Institute of Computer Science, University of Wrocław, Wrocław, Poland | |
local.identifier.pure | 569188 | - |
local.identifier.pure | bc9d385a-ae4b-418f-b68c-0e1b48beaee2 | uuid |
local.identifier.eid | 2-s2.0-84951745267 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84951745267.pdf | 189,72 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.