Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102318
Title: | Colored non-crossing Euclidean Steiner forest |
Authors: | Bereg, S. Fleszar, K. Kindermann, P. Pupyrev, S. Spoerhase, J. Wolff, A. |
Issue Date: | 2015 |
Publisher: | Springer Verlag |
Citation: | Colored non-crossing Euclidean Steiner forest / S. Bereg, K. Fleszar, P. Kindermann, et al. — DOI 10.1007/978-3-662-48971-0_37 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9472. — P. 429-441. |
Abstract: | Given a set of k-colored points in the plane, we consider the problem of finding k trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k = 1, this is the well-known Euclidean Steiner tree problem. For general k, a kρ-approximation algorithm is known, where ρ ≤ 1.21 is the Steiner ratio. We present a PTAS for k = 2, a (5/3 + ε)-approximation for k = 3, and two approximation algorithms for general k, with ratios O(√n log k) and k + ε. © Springer-Verlag Berlin Heidelberg 2015. |
Keywords: | ALGORITHMS EDGE LENGTH EUCLIDEAN EUCLIDEAN STEINER TREE PROBLEMS K-TREES STEINER FORESTS STEINER RATIO APPROXIMATION ALGORITHMS |
URI: | http://elar.urfu.ru/handle/10995/102318 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84952045448 |
WOS ID: | 000375151300037 |
PURE ID: | fe0e1de0-1723-4d16-bcb3-abdd7b114ef4 567340 |
ISSN: | 3029743 |
ISBN: | 9783662489703 |
DOI: | 10.1007/978-3-662-48971-0_37 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84952045448.pdf | 392,32 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.