Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102287
Title: Thermodynamics of the Stockmayer fluid in an applied field
Authors: Elfimova, E. A.
Ivanov, A. O.
Sindt, J. O.
Camp, P. J.
Issue Date: 2015
Publisher: Taylor and Francis Ltd.
Citation: Thermodynamics of the Stockmayer fluid in an applied field / E. A. Elfimova, A. O. Ivanov, J. O. Sindt, et al. — DOI 10.1080/00268976.2015.1058979 // Molecular Physics. — 2015. — Vol. 113. — Iss. 23. — P. 3717-3728.
Abstract: The thermodynamic properties of the Stockmayer fluid in an applied field are studied using theory and computer simulation. Theoretical expressions for the second and third virial coefficients are obtained in terms of the dipolar coupling constant (, measuring the strength of dipolar interactions as compared to thermal energy) and dipole-field interaction energy (α, being proportional to the applied field strength). These expressions are tested against numerical results obtained by Mayer sampling calculations. The expression for the second virial coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole moment and temperature, and over the entire range of the applied field strength (from zero to infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and is not very accurate: higher order terms are very difficult to calculate. The virial coefficients are incorporated in to a thermodynamic theory based on a logarithmic representation of the Helmholtz free energy. This theory is designed to retain the input virial coefficients, and account for some higher order terms in the sense of a resummation. The compressibility factor is obtained from the theory and compared to results from molecular dynamics simulations with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients, the theory captures the effects of the applied field very well. Finally, the vapour-liquid critical parameters are determined from the theory, and compared to published simulation results; the agreement between the theory and simulations is good. © 2015 Taylor & Francis.
Keywords: APPLIED FIELD
SIMULATION
STOCKMAYER FLUID
THEORY
MOLECULAR DYNAMICS
THERMODYNAMIC PROPERTIES
THERMODYNAMICS
APPLIED FIELD
MOLECULAR DYNAMICS SIMULATIONS
SECOND VIRIAL COEFFICIENTS
SIMULATION
STOCKMAYER FLUIDS
THEORETICAL EXPRESSION
THEORY
THIRD VIRIAL COEFFICIENTS
FREE ENERGY
URI: http://elar.urfu.ru/handle/10995/102287
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84959129165
WOS ID: 000365645800009
PURE ID: 267c0778-1778-48c2-87c6-f237824dcc52
551221
ISSN: 268976
DOI: 10.1080/00268976.2015.1058979
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84959129165.pdf841,46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.