Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102276
Title: Special elements of the lattice of epigroup varieties
Authors: Shaprynskiǐ, V. Y.
Skokov, D. V.
Vernikov, B. M.
Issue Date: 2016
Publisher: Birkhauser Verlag AG
Citation: Shaprynskiǐ V. Y. Special elements of the lattice of epigroup varieties / V. Y. Shaprynskiǐ, D. V. Skokov, B. M. Vernikov. — DOI 10.1007/s00012-016-0380-5 // Algebra Universalis. — 2016. — Vol. 76. — Iss. 1. — P. 1-30.
Abstract: We study special elements of three types (namely, neutral, modular and upper-modular elements) in the lattice of all epigroup varieties. Neutral elements are completely determined (it turns out that only four varieties have this property). We find a strong necessary condition for modular elements that completely reduces the problem of description of corresponding varieties to nilvarieties satisfying identities of some special type. Modular elements are completely classified within the class of commutative varieties, while upper-modular elements are completely determined within the wider class of strongly permutative varieties. © 2016, Springer International Publishing.
Keywords: EPIGROUP
LATTICE
MODULAR ELEMENT
NEUTRAL ELEMENT
UPPER-MODULAR ELEMENT
VARIETY OF EPIGROUPS
URI: http://hdl.handle.net/10995/102276
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84961118916
PURE ID: 1091925
3aec7fa8-8976-4a3c-ad5c-29694b674bcf
ISSN: 25240
DOI: 10.1007/s00012-016-0380-5
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84961118916.pdf312,6 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.