Please use this identifier to cite or link to this item:
https://elar.urfu.ru/handle/10995/102237
Title: | Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids |
Authors: | Sindt, J. O. Camp, P. J. Kantorovich, S. S. Elfimova, E. A. Ivanov, A. O. |
Issue Date: | 2016 |
Publisher: | American Physical Society |
Citation: | Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids / J. O. Sindt, P. J. Camp, S. S. Kantorovich, et al. — DOI 10.1103/PhysRevE.93.063117 // Physical Review E. — 2016. — Vol. 93. — Iss. 6. — 063117. |
Abstract: | The frequency-dependent magnetic susceptibility of a ferrofluid is calculated under the assumption that the constituent particles undergo Brownian relaxation only. Brownian-dynamics simulations are carried out in order to test the predictions of a recent theory [A. O. Ivanov, V. S. Zverev, and S. S. Kantorovich, Soft Matter 12, 3507 (2016)1744-683X10.1039/C5SM02679B] that includes the effects of interparticle dipole-dipole interactions. The theory is based on the so-called modified mean-field approach and possesses the following important characteristics: in the low-concentration, noninteracting regime, it gives the correct single-particle Debye-theory results; it yields the exact leading-order results in the zero-frequency limit; it includes particle polydispersity correctly from the outset; and it is based on firm theoretical foundations allowing, in principle, systematic extensions to treat stronger interactions and/or higher concentrations. The theory and simulations are compared in the case of a model monodisperse ferrofluid, where the effects of interactions are predicted to be more pronounced than in a polydisperse ferrofluid. The susceptibility spectra are analyzed in detail in terms of the low-frequency behavior, the position of the peak in the imaginary (out-of-phase) part, and the characteristic decay time of the magnetization autocorrelation function. It is demonstrated that the theory correctly predicts the trends in all of these properties with increasing concentration and dipolar coupling constant, the product of which is proportional to the Langevin susceptibility χL. The theory is in quantitative agreement with the simulation results as long as χL1. © 2016 American Physical Society. |
Keywords: | AUTOCORRELATION MAGNETIC FLUIDS MAGNETIC SUSCEPTIBILITY AUTOCORRELATION FUNCTIONS BROWNIAN DYNAMICS SIMULATIONS DIPOLE DIPOLE INTERACTIONS LOW FREQUENCY BEHAVIOR PARTICLE POLYDISPERSITY POLYDISPERSE FERROFLUIDS QUANTITATIVE AGREEMENT THEORETICAL FOUNDATIONS POLYCRYSTALLINE MATERIALS |
URI: | http://elar.urfu.ru/handle/10995/102237 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84977566069 |
WOS ID: | 000378376600010 |
PURE ID: | f3e67872-1b8b-44fa-8905-fa40487f1c68 1027070 |
ISSN: | 24700045 |
DOI: | 10.1103/PhysRevE.93.063117 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84977566069.pdf | 699,77 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.