Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102208
Title: Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles
Authors: Spallino, L.
Vaccaro, L.
Agnello, S.
Gelardi, F. M.
Zatsepin, A. F.
Cannas, M.
Issue Date: 2016
Publisher: Royal Society of Chemistry
Citation: Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles / L. Spallino, L. Vaccaro, S. Agnello, et al. — DOI 10.1039/c6ra19506g // RSC Advances. — 2016. — Vol. 6. — Iss. 95. — P. 93010-93015.
Abstract: Luminescence properties due to surface defects in SiO2 are the main keystone with particles that have nanoscale dimensions, thus motivating their investigation for many emission related applications in the last few decades. A critical issue is the role played by the atmosphere that, by quenching mechanisms, weakens both the efficiency and stability of the defects. A deep knowledge of these factors is mandatory in order to properly limit any detrimental effects and, ultimately, to offer new advantageous possibilities for their exploitation. Up to now, quenching effects have been interpreted as general defect conversion processes due to the difficulty in disentangling the emission kinetics by the action of the specific quenchers. To overcome this limit, we report a time-resolved investigation of the effects induced in specific controlled molecular environments (N2, O2, CO2 and H2O) on the exceptional molecular-like luminescence that is observed around 3.0-3.4 eV in SiO2 nanoparticles. A comparison with the effects under vacuum indicates changes of the luminescence intensity and lifetime that agree with two quenching mechanisms, static and dynamic. The peculiarity of the spectral features, together with a powerful investigation approach, makes this the system of choice to probe inside the dynamics of the molecule-defect interactions and to reveal promising characteristics for molecular-sensing purposes. © 2016 The Royal Society of Chemistry.
Keywords: CARBON DIOXIDE
LIGHT EMISSION
LUMINESCENCE
MOLECULES
NANOPARTICLES
QUENCHING
CONVERSION PROCESS
DEFECT INTERACTIONS
LUMINESCENCE INTENSITY
LUMINESCENCE PROPERTIES
MOLECULAR ENVIRONMENT
MOLECULE INTERACTIONS
NANOSCALE DIMENSIONS
QUENCHING MECHANISMS
SURFACE DEFECTS
URI: http://elar.urfu.ru/handle/10995/102208
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84989899866
WOS ID: 000385389800104
PURE ID: b7d6c010-d800-496b-aebd-fd51afd4f07b
1187162
ISSN: 20462069
DOI: 10.1039/c6ra19506g
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84989899866.pdf897,38 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.