Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102154
Title: | N-like rheograms of concentrated suspensions of magnetic particles |
Authors: | Lopez-Lopez, M. T. Rodriguez-Arco, L. Zubarev, A. Kuzhir, P. Iskakova, L. Gonzalez-Caballero, F. |
Issue Date: | 2016 |
Publisher: | Society of Rheology |
Citation: | N-like rheograms of concentrated suspensions of magnetic particles / M. T. Lopez-Lopez, L. Rodriguez-Arco, A. Zubarev, et al. — DOI 10.1122/1.4942232 // Journal of Rheology. — 2016. — Vol. 60. — Iss. 2. — P. 267-274. |
Abstract: | We investigate the rheograms of concentrated suspensions of magnetic particles obtained under imposed shear rate in parallel plate geometry. We show that under magnetic field application the usual trend of the rheogram, i.e., increasing shear stress for the whole range of shear rates, is altered by the appearance of a region in which the shear stress decreases as the shear rate is increased. The existence of this region gives to the rheograms an N-like shape. The two initial regions (preyield regime) of these N-like rheograms present unstable flow, characterized by the oscillation of the shear stress with time for each imposed value of shear rate. We also show that rheograms obtained at different sample thicknesses approximately overlap in the developed flow regime, whereas there is a tendency of the shear stress to increase as the thickness is decreased in the preyield regime. This tendency is likely due to the strengthening of pre-existing particle structures by compression as the gap thickness is decreased. Finally, we analyze the effect of the applied magnetic field strength, H, and demonstrate that the rheograms scale with H1.5 to a single master curve, for the range of applied magnetic fields under study. © 2016 The Society of Rheology. |
Keywords: | MAGNETIC FIELDS MAGNETISM OSCILLATING FLOW SHEAR DEFORMATION SHEAR FLOW SHEAR STRESS SUSPENSIONS (COMPONENTS) APPLIED MAGNETIC FIELDS CONCENTRATED SUSPENSION GAP THICKNESS MAGNETIC PARTICLE PARALLEL PLATE GEOMETRY PARTICLE STRUCTURE STRESS DECREASE UNSTABLE FLOWS SUSPENSIONS (FLUIDS) |
URI: | http://elar.urfu.ru/handle/10995/102154 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85013974344 |
WOS ID: | 000372688800006 |
PURE ID: | 736209 |
ISSN: | 1486055 |
DOI: | 10.1122/1.4942232 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85013974344.pdf | 658,44 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.