Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101901
Title: | On the convergence of solutions of variational problems with variable implicit pointwise constraints in variable domains |
Authors: | Kovalevsky, A. A. |
Issue Date: | 2019 |
Publisher: | Springer Verlag |
Citation: | Kovalevsky A. A. On the convergence of solutions of variational problems with variable implicit pointwise constraints in variable domains / A. A. Kovalevsky. — DOI 10.1007/s10231-018-0810-4 // Annali di Matematica Pura ed Applicata. — 2019. — Vol. 198. — Iss. 4. — P. 1087-1119. |
Abstract: | In this paper, we give sufficient conditions for the convergence of minimizers and minimum values of integral and more general functionals Js: W1 , p(Ωs) → R on the sets Us(hs) = { v∈ W1 , p(Ωs) : hs(v) ⩽ 0 a.e. in Ωs} , where p> 1 , { Ωs} is a sequence of domains contained in a bounded domain Ω of Rn (n⩾ 2), and { hs} is a sequence of functions on R. In so doing, we assume that the considered functionals Γ-converge to a functional defined on W1 , p(Ω) and the spaces W1 , p(Ωs) are strongly connected with the space W1 , p(Ω). Certain conditions on the relation between the functions hs and a function h: R→ R are also required in our main results. © 2018, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature. |
Keywords: | IMPLICIT POINTWISE CONSTRAINTS INTEGRAL FUNCTIONAL MINIMIZER MINIMUM VALUE VARIABLE DOMAINS VARIATIONAL PROBLEM Γ-CONVERGENCE |
URI: | http://elar.urfu.ru/handle/10995/101901 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 38622403 |
SCOPUS ID: | 85057577134 |
WOS ID: | 000477926800002 |
PURE ID: | 45833a40-5371-4ece-a6e2-4b9adcae775e 10270654 |
ISSN: | 3733114 |
DOI: | 10.1007/s10231-018-0810-4 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85057577134.pdf | 700,06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.