Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101765
Title: | Resonant optical second harmonic generation in graphene-based heterostructures |
Authors: | Vandelli, M. Katsnelson, M. I. Stepanov, E. A. |
Issue Date: | 2019 |
Publisher: | American Physical Society |
Citation: | Vandelli M. Resonant optical second harmonic generation in graphene-based heterostructures / M. Vandelli, M. I. Katsnelson, E. A. Stepanov. — DOI 10.1103/PhysRevB.99.165432 // Physical Review B. — 2019. — Vol. 99. — Iss. 16. — 165432. |
Abstract: | An optical second-harmonic generation (SHG) allows to probe various structural and symmetry-related properties of materials, since it is sensitive to the inversion symmetry breaking in the system. Here, we investigate the SHG response from a single layer of graphene disposed on an insulating hexagonal boron nitride (hBN) and silicon carbide (SiC) substrates. The considered systems are described by a noninteracting tight-binding model with a mass term, which describes a nonequivalence of two sublattices of graphene when the latter is placed on a substrate. The resulting SHG signal linearly depends on the degree of the inversion symmetry breaking (value of the mass term) and reveals several resonances associated with the band gap, van Hove singularity, and bandwidth. The difficulty in distinguishing between SHG signals coming from the considered heterostructure and environment (insulating substrate) can be avoided by applying a homogeneous magnetic field. The latter creates Landau levels in the energy spectrum and leads to multiple resonances in the SHG spectrum. Position of these resonances explicitly depends on the value of the mass term. We show that at energies below the band gap of the substrate the SHG signal from the massive graphene becomes resonant at physically relevant values of the applied magnetic field, while the SHG response from the environment stays off resonant. © 2019 American Physical Society. |
Keywords: | BORON CARBIDE ENERGY GAP GRAPHENE III-V SEMICONDUCTORS MAGNETIC FIELDS NONLINEAR OPTICS RESONANCE SILICON CARBIDE SUBSTRATES APPLIED MAGNETIC FIELDS HEXAGONAL BORON NITRIDE (H-BN) HOMOGENEOUS MAGNETIC FIELD INSULATING SUBSTRATES OPTICAL SECOND-HARMONIC GENERATION SILICON CARBIDES (SIC) TIGHT BINDING MODEL VAN HOVE SINGULARITIES HARMONIC GENERATION |
URI: | http://elar.urfu.ru/handle/10995/101765 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85065466611 |
WOS ID: | 000466407400008 |
PURE ID: | 0b5dc946-8361-4487-b376-079e6e812979 9817070 |
ISSN: | 24699950 |
DOI: | 10.1103/PhysRevB.99.165432 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85065466611.pdf | 652,89 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.