Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101750
Title: | The Menger and projective Menger properties of function spaces with the set-open topology |
Authors: | Osipov, A. V. |
Issue Date: | 2019 |
Publisher: | De Gruyter |
Citation: | Osipov A. V. The Menger and projective Menger properties of function spaces with the set-open topology / A. V. Osipov. — DOI 10.1515/ms-2017-0258 // Mathematica Slovaca. — 2019. — Vol. 69. — Iss. 3. — P. 699-706. |
Abstract: | For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology. A Menger space is a topological space in which for every sequence of open covers u1, u2, ⋯ of the space there are finite sets F1 ? u1, F2 ? u2, ⋯ such that family F1 ∪ F2 ∪ ⋯ covers the space. In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that Cλ(X) is Menger if and only if Cλ(X) is σ-compact; Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X. © 2019 Mathematical Institute Slovak Academy of Sciences. |
Keywords: | BASICALLY DISCONNECTED SPACE FUNCTION SPACE MENGER PROJECTIVE MENGER SET-OPEN TOPOLOGY Σ-BOUNDED Σ-COMPACT Σ-PSEUDOCOMPACT |
URI: | http://elar.urfu.ru/handle/10995/101750 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85066866255 |
WOS ID: | 000468961900019 |
PURE ID: | 9827578 |
ISSN: | 1399918 |
DOI: | 10.1515/ms-2017-0258 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85066866255.pdf | 159,88 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.