Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101697
Title: Selectors for dense subsets of function spaces
Authors: Bukovský, L.
Osipov, A. V.
Issue Date: 2019
Publisher: Elsevier B.V.
Citation: Bukovský L. Selectors for dense subsets of function spaces / L. Bukovský, A. V. Osipov. — DOI 10.1016/j.topol.2019.106909 // Topology and its Applications. — 2019. — Vol. 268. — 106909.
Abstract: Let USCp ⋆(X) be the topological space of real upper semicontinuous bounded functions defined on X with the subspace topology of the product topology on RX. Φ˜↑,Ψ˜↑ are the sets of all upper sequentially dense, upper dense or pointwise dense subsets of USCp ⋆(X), respectively. We prove several equivalent assertions to that USCp ⋆(X) satisfies the selection principles S1(Φ˜↑,Ψ˜↑), including a condition on the topological space X. We prove similar results for the topological space Cp ⋆(X) of continuous bounded functions. Similar results hold true for the selection principles Sfin(Φ˜↑,Ψ˜↑). © 2019 Elsevier B.V.
Keywords: COVERING PROPERTY S1
DENSE SUBSET
POINTWISE DENSE SUBSET
SELECTION PRINCIPLE S1
SEQUENTIALLY DENSE SUBSET
UPPER DENSE SET
UPPER SEMICONTINUOUS FUNCTION
UPPER SEQUENTIALLY DENSE SET
URI: http://hdl.handle.net/10995/101697
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85073001883
PURE ID: 11114970
41c131a3-35ef-4805-9fea-20200d3707f7
ISSN: 1668641
DOI: 10.1016/j.topol.2019.106909
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85073001883.pdf231,7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.