Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBukovský, L.en
dc.contributor.authorOsipov, A. V.en
dc.date.accessioned2021-08-31T14:59:05Z-
dc.date.available2021-08-31T14:59:05Z-
dc.date.issued2019-
dc.identifier.citationBukovský L. Selectors for dense subsets of function spaces / L. Bukovský, A. V. Osipov. — DOI 10.1016/j.topol.2019.106909 // Topology and its Applications. — 2019. — Vol. 268. — 106909.en
dc.identifier.issn1668641-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073001883&doi=10.1016%2fj.topol.2019.106909&partnerID=40&md5=0803f518f6530204e9b0a9ea30c065c8
dc.identifier.otherhttp://arxiv.org/pdf/1905.10287m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101697-
dc.description.abstractLet USCp ⋆(X) be the topological space of real upper semicontinuous bounded functions defined on X with the subspace topology of the product topology on RX. Φ˜↑,Ψ˜↑ are the sets of all upper sequentially dense, upper dense or pointwise dense subsets of USCp ⋆(X), respectively. We prove several equivalent assertions to that USCp ⋆(X) satisfies the selection principles S1(Φ˜↑,Ψ˜↑), including a condition on the topological space X. We prove similar results for the topological space Cp ⋆(X) of continuous bounded functions. Similar results hold true for the selection principles Sfin(Φ˜↑,Ψ˜↑). © 2019 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTopol. Appl.2
dc.sourceTopology and its Applicationsen
dc.subjectCOVERING PROPERTY S1en
dc.subjectDENSE SUBSETen
dc.subjectPOINTWISE DENSE SUBSETen
dc.subjectSELECTION PRINCIPLE S1en
dc.subjectSEQUENTIALLY DENSE SUBSETen
dc.subjectUPPER DENSE SETen
dc.subjectUPPER SEMICONTINUOUS FUNCTIONen
dc.subjectUPPER SEQUENTIALLY DENSE SETen
dc.titleSelectors for dense subsets of function spacesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.topol.2019.106909-
dc.identifier.scopus85073001883-
local.contributor.employeeBukovský, L., Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, Košice, 040 01, Slovakia
local.contributor.employeeOsipov, A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russian Federation
local.volume268-
dc.identifier.wos000497602700007-
local.contributor.departmentInstitute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, Košice, 040 01, Slovakia
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russian Federation
local.identifier.pure41c131a3-35ef-4805-9fea-20200d3707f7uuid
local.identifier.pure11114970-
local.description.order106909-
local.identifier.eid2-s2.0-85073001883-
local.identifier.wosWOS:000497602700007-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85073001883.pdf231,7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.