Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101673
Title: | Prediction the dynamic of changes in the concentrations of main greenhouse gases by an artificial neural network type NARX |
Authors: | Sergeev, A. Buevich, A. Shichkin, A. Baglaeva, E. Subbotina, I. Medvedev, A. Sergeeva, M. |
Issue Date: | 2020 |
Publisher: | American Institute of Physics Inc. |
Citation: | Prediction the dynamic of changes in the concentrations of main greenhouse gases by an artificial neural network type NARX / A. Sergeev, A. Buevich, A. Shichkin, et al. — DOI 10.1063/5.0027183 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 120020. |
Abstract: | The paper considered the use of one of the most accurate artificial neural networks for predicting time series - a nonlinear autoregressive neural network with external input (NARX) for predicting the dynamics of changes in the concentrations of the main greenhouse gases. The data were obtained in the course of monitoring the dynamics of changes in the main greenhouse gases on the Arctic island Belyy, Russia. The data of the surface concentration of methane, carbon dioxide, carbon monoxide and water vapor were used. A time interval of 168 hours was chosen for the study during the summer period (July-August 2016). The NARX model accurately predicted concentration changes for all greenhouse gases. © 2020 American Institute of Physics Inc.. All rights reserved. |
URI: | http://elar.urfu.ru/handle/10995/101673 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85097977145 |
WOS ID: | 000636709500366 |
PURE ID: | ed987641-704e-46f1-9515-4f34b5be571c 20396488 |
ISSN: | 0094243X |
ISBN: | 9780735440258 |
DOI: | 10.1063/5.0027183 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85097977145.pdf | 681,6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.