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Abstract. The paper considered the use of one of the most accurate artificial neural networks for predicting time series - 
a nonlinear autoregressive neural network with external input (NARX) for predicting the dynamics of changes in the 
concentrations of the main greenhouse gases. The data were obtained in the course of monitoring the dynamics of 
changes in the main greenhouse gases on the Arctic island Belyy, Russia. The data of the surface concentration of 
methane, carbon dioxide, carbon monoxide and water vapor were used. A time interval of 168 hours was chosen for the 
study during the summer period (July-August 2016). The NARX model accurately predicted concentration changes for 
all greenhouse gases. 

INTRODUCTION 

The content of greenhouse gases in the atmosphere varies greatly in space and time, and their sources and sinks 
are very diverse and not well understood. Therefore, all the developed scenarios of the temporal dynamics of the 
global content of greenhouse gases are prognostic and can be carried out with a certain probability. For the 
implementation of such predictions, models based on artificial neural networks (ANN) [1] - [16], and, in particular, 
networks like NARX [17]-[20], are well suited. The NARX network is a recurrent dynamic multi-level feedback 
network. At its core, contains an autoregression model, which is used to describe systems with inertia. The predicted 
value depends on the previous values of the time series. The paper predicts changes in the concentration of several 
greenhouse gases by a model based on the NARX ANN. Water vapor (H2O) is the main natural greenhouse gas. 
Carbon dioxide (CO2) is the most important source of climate change, accounting for an estimated 64% of global 
warming. The main sources of carbon dioxide emissions into the atmosphere are the production, transportation, 
processing and consumption of fossil fuels (86%), the reduction of tropical forests and another biomass burning 
(12%). Methane (СН4) has both natural and anthropogenic origin. It is estimated that methane accounts for about 
20% of global warming. Carbon monoxide (CO) is not a greenhouse gas, but it affects chemical cycles in the 
atmosphere, which result in the formation or decomposition of other greenhouse gases [21]. 
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MATERIALS AND METHODS 

Measurements of greenhouse gases carbon dioxide, carbon monoxide, methane, and water vapor were made on 
the Arctic Island, Belyy, YNAO, Russia. The island is located 9 km north of the Yamal Peninsula in the Kara Sea 
(Fig. 1). 

 

FIGURE 1. Place of measurements (Google Earth). 
 
Concentrations of greenhouse gases and the main meteorological parameters (temperature, humidity, 

atmospheric pressure, wind speed and direction) were made by a cavity ring-down spectrometer Picarro G2401 and 
Vaisala AWS310 weather station. Gas concentrations and meteorological parameters were synchronized. 

The time interval of 168 hours was divided into two parts. The first "long" part (144 hours) was used for train the 
model based on NARX. The second “short” (24 hours) was used only for forecasting and for comparing the 
predicted and measured data. The network structure was determined by computer simulation. The time interval and 
meteorological parameters were fed to the input, the hidden layer consisted of several neurons, and the output layer 
represented the gas concentration corresponding to the time interval. The Levenberg-Marquardt training algorithm 
was used for learning [18]. 

The number of neurons in the hidden layer in NARX was selected using the minimum mean square error 
(RMSE). The number of neurons ranged from 5 to 25. Each network was trained 500 times. Then the best of them 
was selected. 

Indices mean absolute error (MAE) (1), RMSE (2), and the index of agreement (d), (a standardized measure of 
the degree of model prediction error and varies between 0 and 1, where a value of 1 indicates a perfect match, and 0 
indicates no agreement at all [22] (3) was verified the predictive accuracy of each selected approach between the 
prediction and raw data from the training data set. 
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where zmod(xi) is a predicted concentration in location xi, z(xi) is a measured concentration, 𝑍 is a mean 
concentration, and n is a number of points. 
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RESULTS AND DISCUSSION 

The final neuron number in the hidden layer was 20 for NARX network. The indices given in table 1 show that 
the forecast of changes in the concentrations for all studied gases was carried out with sufficient accuracy. 

TABLE 1. Accuracy assessment indices of the greenhouse gases concentration. 

Gas MAE RMSE d 

H2O 0.06 0.08 0.72 

CO2 1.80 2.16 0.80 

CH4 0.03 0.03 0.62 

CO 0.002 0.003 0.82 

 
It is especially important that the index of agreement d is high (with the exception of the indicator for CH4). 

According to [22], this means a good accuracy of the model. Figure 2 visualizes the results of the forecast. 
 

FIGURE 2. Visualization of the results of the prediction models based on NARX. 

CONCLUSION 

Due to the uncertainty of a number of climate feedbacks, the behavior of such a complex system as the 
atmosphere is difficult to predict. Even with the absolutely correct setting of changes in the concentration of 
greenhouse gases, the resulting change in the temperature of the system is difficult to determine unambiguously. 
Nevertheless, the authors believe that it is ANN-based models that can cope with such complex predictions. 
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