Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101672
Title: Strongly sequentially separable function spaces, via selection principles
Authors: Osipov, A. V.
Szewczak, P.
Tsaban, B.
Issue Date: 2020
Publisher: Elsevier B.V.
Citation: Osipov A. V. Strongly sequentially separable function spaces, via selection principles / A. V. Osipov, P. Szewczak, B. Tsaban. — DOI 10.1016/j.topol.2019.106942 // Topology and its Applications. — 2020. — Vol. 270. — 106942.
Abstract: A separable space is strongly sequentially separable if, for each countable dense set, every point in the space is a limit of a sequence from the dense set. We consider this and related properties, for the spaces of continuous and Borel real-valued functions on Tychonoff spaces, with the topology of pointwise convergence. Our results solve a problem stated by Gartside, Lo, and Marsh. © 2019 Elsevier B.V.
Keywords: (ΩBORΓ)
(ΩΓ)
BOREL FUNCTION
C-SPACE
FUNCTION SPACES
GERLITS–NAGY
SELECTION PRINCIPLES
STRONG SEQUENTIAL SEPARABILITY
Γ-PROPERTY
Γ-SET
URI: http://hdl.handle.net/10995/101672
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85074982012
PURE ID: 11328279
39eaefc7-514c-419f-8bb4-75552e0798eb
ISSN: 1668641
DOI: 10.1016/j.topol.2019.106942
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85074982012.pdf179,09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.