Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101515
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKitov, N. V.en
dc.contributor.authorVolkov, M. V.en
dc.date.accessioned2021-08-31T14:57:50Z-
dc.date.available2021-08-31T14:57:50Z-
dc.date.issued2020-
dc.identifier.citationKitov N. V. Identities of the kauffman monoid K4 and of the Jones Monoid J4 / N. V. Kitov, M. V. Volkov. — DOI 10.1007/978-3-030-48006-6_12 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2020. — Vol. 12180 LNCS. — P. 156-178.en
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85086002655&doi=10.1007%2f978-3-030-48006-6_12&partnerID=40&md5=76eca67e7b1951349f70372c3ca5ff7b
dc.identifier.otherhttp://arxiv.org/pdf/1910.09190m
dc.identifier.urihttp://hdl.handle.net/10995/101515-
dc.description.abstractKauffman monoids Kn and Jones monoids Jn, n=2,3,…, are two families of monoids relevant in knot theory. We prove a somewhat counterintuitive result that the Kauffman monoids K3 and K4 satisfy exactly the same identities. This leads to a polynomial time algorithm to check whether a given identity holds in K4. As a byproduct, we also find a polynomial time algorithm for checking identities in the Jones monoid J4. © Springer Nature Switzerland AG 2020.en
dc.description.sponsorshipM. V. Volkov—Supported by Ural Mathematical Center under agreement No. 075-02-2020-1537/1 with the Ministry of Science and Higher Education of the Russian Federation.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectCOMPUTER SCIENCEen
dc.subjectCOMPUTERSen
dc.subjectKNOT THEORYen
dc.subjectMONOIDSen
dc.subjectPOLYNOMIAL-TIME ALGORITHMSen
dc.subjectPOLYNOMIAL APPROXIMATIONen
dc.titleIdentities of the kauffman monoid K4 and of the Jones Monoid J4en
dc.typeBook chapteren
dc.typeinfo:eu-repo/semantics/bookParten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-030-48006-6_12-
dc.identifier.scopus85086002655-
local.contributor.employeeKitov, N.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeVolkov, M.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation
local.description.firstpage156-
local.description.lastpage178-
local.volume12180 LNCS-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation
local.identifier.pure13161432-
local.identifier.pure7547a38b-c347-4ec4-965c-ce80e5b1ecbduuid
local.identifier.eid2-s2.0-85086002655-
local.fund.umc075-02-2020-1537-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85086002655.pdf299,17 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.