Please use this identifier to cite or link to this item:
Title: The Lattice of Varieties of Implication Semigroups
Authors: Gusev, S. V.
Sankappanavar, H. P.
Vernikov, B. M.
Issue Date: 2020
Publisher: Springer
Citation: Gusev S. V. The Lattice of Varieties of Implication Semigroups / S. V. Gusev, H. P. Sankappanavar, B. M. Vernikov. — DOI 10.1007/s11083-019-09503-5 // Order. — 2020. — Vol. 37. — Iss. 2. — P. 271-277.
Abstract: An implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-ary operation 0 satisfying the identities (x→ y) → z≈ x→ (y→ z) , (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′′≈ 0 where u′ means u→ 0 for any term u. We completely describe the lattice of varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements. © 2019, Springer Nature B.V.
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85088197927
PURE ID: 13390205
ISSN: 1678094
DOI: 10.1007/s11083-019-09503-5
metadata.dc.description.sponsorship: The first and the third authors were partially supported by the Ministry of Education and Science of the Russian Federation (project 1.6018.2017/8.9) and by the Russian Foundation for Basic Research (grant No. 17-01-00551).
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85088197927.pdf176,26 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.