Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101488
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGusev, S. V.en
dc.contributor.authorSankappanavar, H. P.en
dc.contributor.authorVernikov, B. M.en
dc.date.accessioned2021-08-31T14:57:39Z-
dc.date.available2021-08-31T14:57:39Z-
dc.date.issued2020-
dc.identifier.citationGusev S. V. The Lattice of Varieties of Implication Semigroups / S. V. Gusev, H. P. Sankappanavar, B. M. Vernikov. — DOI 10.1007/s11083-019-09503-5 // Order. — 2020. — Vol. 37. — Iss. 2. — P. 271-277.en
dc.identifier.issn1678094-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85088197927&doi=10.1007%2fs11083-019-09503-5&partnerID=40&md5=8558d0b4ecc865a8d6b2794fbde7475c
dc.identifier.otherhttp://arxiv.org/pdf/1809.03148m
dc.identifier.urihttp://hdl.handle.net/10995/101488-
dc.description.abstractAn implication semigroup is an algebra of type (2, 0) with a binary operation → and a 0-ary operation 0 satisfying the identities (x→ y) → z≈ x→ (y→ z) , (x→y)→z≈[(z′→x)→(y→z)′]′ and 0 ′′≈ 0 where u′ means u→ 0 for any term u. We completely describe the lattice of varieties of implication semigroups. It turns out that this lattice is non-modular and consists of 16 elements. © 2019, Springer Nature B.V.en
dc.description.sponsorshipThe first and the third authors were partially supported by the Ministry of Education and Science of the Russian Federation (project 1.6018.2017/8.9) and by the Russian Foundation for Basic Research (grant No. 17-01-00551).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceOrder2
dc.sourceOrderen
dc.subjectIMPLICATION SEMIGROUPen
dc.subjectLATTICE OF VARIETIESen
dc.subjectVARIETYen
dc.titleThe Lattice of Varieties of Implication Semigroupsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s11083-019-09503-5-
dc.identifier.scopus85088197927-
local.contributor.employeeGusev, S.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina str. 51, 620000, Ekaterinburg, Russian Federation
local.contributor.employeeSankappanavar, H.P., Department of Mathematics, State University of New York, New Paltz, NY 12561, United States
local.contributor.employeeVernikov, B.M., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina str. 51, 620000, Ekaterinburg, Russian Federation
local.description.firstpage271-
local.description.lastpage277-
local.issue2-
local.volume37-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenina str. 51, 620000, Ekaterinburg, Russian Federation
local.contributor.departmentDepartment of Mathematics, State University of New York, New Paltz, NY 12561, United States
local.identifier.pure13390205-
local.identifier.pure282c04f3-3960-469d-8b26-8b45998c619buuid
local.identifier.eid2-s2.0-85088197927-
local.fund.rffi17-01-00551-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85088197927.pdf176,26 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.