Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93156
Title: Asymptotic Solutions of a Parabolic Equation Near Singular Points of A and B Types
Authors: Zakharov, S. V.
Issue Date: 2019
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Zakharov S. V. Asymptotic Solutions of a Parabolic Equation Near Singular Points of A and B Types / S. V. Zakharov. — DOI 10.15826/umj.2019.1.010. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 1. — P. 101-108.
Abstract: The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases when the solution of the limit problem has a point of gradient catastrophe. Asymptotic solutions are found by using the Cole–Hopf transform. The integrals determining the asymptotic solutions correspond to the Lagrange singularities of type A and the boundary singularities of type B. The behavior of the asymptotic solutions is described in terms of the weighted Sobolev spaces.
Keywords: QUASI-LINEAR PARABOLIC EQUATION
COLE–HOPF TRANSFORM
SINGULAR POINTS
ASYMPTOTIC SOLUTIONS
WHITNEY FOLD SINGULARITY
IL'IN'S UNIVERSAL SOLUTION
WEIGHTED SOBOLEV SPACES
URI: http://elar.urfu.ru/handle/10995/93156
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.1.010
Origin: Ural Mathematical Journal. 2019. Volume 5. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2019_5_1_101-108.pdf151,96 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons