Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93151
Название: Harmonic Interpolating Wavelets in Neumann Boundary Value Problem in a Circle
Авторы: Yamkovoi, D. A.
Дата публикации: 2019
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Yamkovoi D. A. Harmonic Interpolating Wavelets in Neumann Boundary Value Problem in a Circle / D. A. Yamkovoi. — DOI 10.15826/umj.2019.1.009. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 1. — P. 91-100.
Аннотация: The Neumann boundary value problem (BVP) in a unit circle is discussed. For the solution of the Neumann BVP, we built a method employing series representation of given 2π-periodic continuous boundary function by interpolating wavelets consisting of trigonometric polynomials. It is convenient to use the method due to the fact that such series is easy to extend to harmonic polynomials inside a circle. Moreover, coefficients of the series have an easy-to-calculate form. The representation by the interpolating wavelets is constructed by using an interpolation projection to subspaces of a multiresolution analysis with basis 2π-periodic scaling functions (more exactly, their binary rational compressions and shifts). That functions were developed by Subbotin and Chernykh on the basis of Meyer-type wavelets. We will use three kinds of such functions, where two out of the three generates systems, which are orthogonal and simultaneous interpolating on uniform grids of the corresponding scale and the last one generates only interpolating on the same uniform grids system. As a result, using the interpolation property of wavelets mentioned above, we obtain the exact representation of the solution for the Neumann BVP by series of that wavelets and numerical bound of the approximation of solution by partial sum of such series.
Ключевые слова: WAVELETS
INTERPOLATING WAVELETS
HARMONIC FUNCTIONS
NEUMANN BOUNDARY VALUE PROBLEM
URI: http://elar.urfu.ru/handle/10995/93151
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.1.009
Сведения о поддержке: This work was supported by Russian Science Foundation (project no.14-11-00702).
Карточка проекта РНФ: 14-11-00702
Источники: Ural Mathematical Journal. 2019. Volume 5. № 1
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_1_91-100.pdf169,36 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons