Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93151
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorYamkovoi, D. A.en
dc.date.accessioned2020-10-30T12:54:12Z-
dc.date.available2020-10-30T12:54:12Z-
dc.date.issued2019-
dc.identifier.citationYamkovoi D. A. Harmonic Interpolating Wavelets in Neumann Boundary Value Problem in a Circle / D. A. Yamkovoi. — DOI 10.15826/umj.2019.1.009. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 1. — P. 91-100.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93151-
dc.description.abstractThe Neumann boundary value problem (BVP) in a unit circle is discussed. For the solution of the Neumann BVP, we built a method employing series representation of given 2π-periodic continuous boundary function by interpolating wavelets consisting of trigonometric polynomials. It is convenient to use the method due to the fact that such series is easy to extend to harmonic polynomials inside a circle. Moreover, coefficients of the series have an easy-to-calculate form. The representation by the interpolating wavelets is constructed by using an interpolation projection to subspaces of a multiresolution analysis with basis 2π-periodic scaling functions (more exactly, their binary rational compressions and shifts). That functions were developed by Subbotin and Chernykh on the basis of Meyer-type wavelets. We will use three kinds of such functions, where two out of the three generates systems, which are orthogonal and simultaneous interpolating on uniform grids of the corresponding scale and the last one generates only interpolating on the same uniform grids system. As a result, using the interpolation property of wavelets mentioned above, we obtain the exact representation of the solution for the Neumann BVP by series of that wavelets and numerical bound of the approximation of solution by partial sum of such series.en
dc.description.sponsorshipThis work was supported by Russian Science Foundation (project no.14-11-00702).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relationinfo:eu-repo/grantAgreement/RSF//14-11-00702en
dc.relation.ispartofUral Mathematical Journal. 2019. Volume 5. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectWAVELETSen
dc.subjectINTERPOLATING WAVELETSen
dc.subjectHARMONIC FUNCTIONSen
dc.subjectNEUMANN BOUNDARY VALUE PROBLEMen
dc.titleHarmonic Interpolating Wavelets in Neumann Boundary Value Problem in a Circleen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2019.1.009-
local.description.firstpage91-
local.description.lastpage100-
local.issue1-
local.volume5-
local.fund.rsf14-11-00702-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_1_91-100.pdf169,36 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons