Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93142
Title: Approximation by Local Parabolic Splines Constructed on the Basis of Interpolation in the Mean
Authors: Strelkova, E. V.
Issue Date: 2017
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Strelkova E. V. Approximation by Local Parabolic Splines Constructed on the Basis of Interpolation in the Mean / E. V. Strelkova. — DOI 10.15826/umj.2017.1.007. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 1. — P. 81-94.
Abstract: The paper deals with approximative and form-retaining properties of the local parabolic splines of the form S(x)=∑jyjB2(x−jh), (h>0), where B2 is a normalized parabolic spline with the uniform nodes and functionals yj=yj(f) are given for an arbitrary function f defined on R by means of the equalities yj=1h1∫−h12h12f(jh+t)dt(j∈Z).On the class W2∞ of functions under 0<h1≤2h, the approximation error value is calculated exactly for the case of approximation by such splines in the uniform metrics.
Keywords: LOCAL PARABOLIC SPLINES
APPROXIMATION
MEAN
URI: http://elar.urfu.ru/handle/10995/93142
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2017.1.007
Origin: Ural Mathematical Journal. 2017. Volume 3. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2017_3_1_81-94.pdf205,9 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons