Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93130
Title: On Interpolation by Almost Trigonometric Splines
Authors: Novikov, S. I.
Issue Date: 2017
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Novikov S. I. On Interpolation by Almost Trigonometric Splines / S. I. Novikov. — DOI 10.15826/umj.2017.2.009. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 2. — P. 67-73.
Abstract: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator L2n+2(D)=D2(D2+12)(D2+22)⋯(D2+n2) with n∈N are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.
Keywords: SPLINES
INTERPOLATION
APPROXIMATION
LINEAR DIFFERENTIAL OPERATOR
URI: http://elar.urfu.ru/handle/10995/93130
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2017.2.009
metadata.dc.description.sponsorship: This work was supported by the Program “Modern problems in function theory and applications” of the Ural Branch of RAS (project no. 15–16–1–4).
Origin: Ural Mathematical Journal. 2017. Volume 3. № 2
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2017_3_2_67-73.pdf110,59 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons