Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93108
Title: An Algorithm for Computing Boundary Points of Reachable Sets of Control Systems under Integral Constraints
Authors: Gusev, M. I.
Issue Date: 2017
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Gusev M. I. An Algorithm for Computing Boundary Points of Reachable Sets of Control Systems under Integral Constraints / M. I. Gusev. — DOI 10.15826/umj.2017.1.003. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 1. — P. 44-51.
Abstract: In this paper we consider a reachability problem for a nonlinear affine-control system with integral constraints, which assumed to be quadratic in the control variables. Under controllability assumptions it was proved [8] that any admissible control, that steers the control system to the boundary of its reachable set, is a local solution to an optimal control problem with an integral cost functional and terminal constraints. This results in the Pontriagyn maximum principle for boundary trajectories. We propose here an numerical algorithm for computing the reachable set boundary based on the maximum principle and provide some numerical examples.
Keywords: OPTIMAL CONTROL
REACHABLE SET
INTEGRAL CONSTRAINTS
BOUNDARY POINTS
PONTRIAGYN MAXIMUM PRINCIPLE
URI: http://elar.urfu.ru/handle/10995/93108
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2017.1.003
metadata.dc.description.sponsorship: The research is supported by Russian Science Foundation, project No. 16-11-10146.
RSCF project card: 16-11-10146
Origin: Ural Mathematical Journal. 2017. Volume 3. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2017_3_1_44-51.pdf154,09 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons