Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93100
Title: Some Properties of Operator Exponent
Authors: Korkina, L. F.
Rekant, M. A.
Issue Date: 2018
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Korkina L. F. Some Properties of Operator Exponent / L. F. Korkina, M. A. Rekant. — DOI 10.15826/umj.2018.2.005. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 2. — P. 33-42.
Abstract: We study operators given by series, in particular, operators of the form eB=∑n=0∞Bn/n!, where B is an operator acting in a Banach space X. A corresponding example is provided. In our future research, we will use these operators for introducing and studying functions of operators constructed (with the use of the Cauchy integral formula) on the basis of scalar functions and admitting a faster than power growth at infinity.
Keywords: CLOSED OPERATOR
OPERATOR EXPONENT
MULTIPLICATIVE PROPERTY
URI: http://elar.urfu.ru/handle/10995/93100
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2018.2.005
Origin: Ural Mathematical Journal. 2018. Volume 4. № 2
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2018_4_2_33-42.pdf178,01 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons