Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93076
Название: | One-Sided L-Approximation on a Sphere of the Characteristic Function of a Layer |
Авторы: | Deikalova, M. V. Torgashova, A. Yu. |
Дата публикации: | 2018 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Deikalova M. V. One-Sided L-Approximation on a Sphere of the Characteristic Function of a Layer / M. V. Deikalova, A. Yu. Torgashova. — DOI 10.15826/umj.2018.2.003. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 2. — P. 13-23. |
Аннотация: | In the space L(Sm−1) of functions integrable on the unit sphere Sm−1 of the Euclidean space Rm of dimension m≥3, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer G(J)={x=(x1,x2,…,xm)∈Sm−1:xm∈J}, where J is one of the intervals (a,1], (a,b), and [−1,b), −1<a<b<1, by the set of algebraic polynomials of given degree n in m variables. This problem reduces to the one-dimensional problem of one-sided approximation in the space Lϕ(−1,1) with the ultraspherical weight ϕ(t)=(1−t2)α, α=(m−3)/2, to the characteristic function of the interval J. This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G.Babenko, M.V.Deikalova, and Sz.G.Revesz (2015) and M.V.Deikalova and A.Yu.Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals. |
Ключевые слова: | ONE-SIDED APPROXIMATION CHARACTERISTIC FUNCTION SPHERICAL LAYER SPHERICAL CAP ALGEBRAIC POLYNOMIALS |
URI: | http://elar.urfu.ru/handle/10995/93076 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2018.2.003 |
Сведения о поддержке: | This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). The authors are grateful to Professor V.V. Arestov for the attention to their study and useful discussion of the results. |
Источники: | Ural Mathematical Journal. 2018. Volume 4. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2018_4_2_13-23.pdf | 190,8 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons