Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93076
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Deikalova, M. V. | en |
dc.contributor.author | Torgashova, A. Yu. | en |
dc.date.accessioned | 2020-10-30T12:53:59Z | - |
dc.date.available | 2020-10-30T12:53:59Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Deikalova M. V. One-Sided L-Approximation on a Sphere of the Characteristic Function of a Layer / M. V. Deikalova, A. Yu. Torgashova. — DOI 10.15826/umj.2018.2.003. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 2. — P. 13-23. | en |
dc.identifier.issn | 2414-3952 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/93076 | - |
dc.description.abstract | In the space L(Sm−1) of functions integrable on the unit sphere Sm−1 of the Euclidean space Rm of dimension m≥3, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer G(J)={x=(x1,x2,…,xm)∈Sm−1:xm∈J}, where J is one of the intervals (a,1], (a,b), and [−1,b), −1<a<b<1, by the set of algebraic polynomials of given degree n in m variables. This problem reduces to the one-dimensional problem of one-sided approximation in the space Lϕ(−1,1) with the ultraspherical weight ϕ(t)=(1−t2)α, α=(m−3)/2, to the characteristic function of the interval J. This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G.Babenko, M.V.Deikalova, and Sz.G.Revesz (2015) and M.V.Deikalova and A.Yu.Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals. | en |
dc.description.sponsorship | This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). | en |
dc.description.sponsorship | The authors are grateful to Professor V.V. Arestov for the attention to their study and useful discussion of the results. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.publisher | Ural Federal University named after the first President of Russia B.N. Yeltsin | en |
dc.relation.ispartof | Ural Mathematical Journal. 2018. Volume 4. № 2 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | ONE-SIDED APPROXIMATION | en |
dc.subject | CHARACTERISTIC FUNCTION | en |
dc.subject | SPHERICAL LAYER | en |
dc.subject | SPHERICAL CAP | en |
dc.subject | ALGEBRAIC POLYNOMIALS | en |
dc.title | One-Sided L-Approximation on a Sphere of the Characteristic Function of a Layer | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.15826/umj.2018.2.003 | - |
local.description.firstpage | 13 | - |
local.description.lastpage | 23 | - |
local.issue | 2 | - |
local.volume | 4 | - |
local.fund.rffi | 18-01-00336 | - |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2018_4_2_13-23.pdf | 190,8 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons