Please use this identifier to cite or link to this item: https://elar.urfu.ru/handle/10995/93060
Title: Domination and Edge Domination in Trees
Authors: Senthilkumar, B.
Venkatakrishnan, Y. B.
Kumar, H. N.
Issue Date: 2020
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Senthilkumar B. Domination and Edge Domination in Trees / B. Senthilkumar, Y. B. Venkatakrishnan, H. N. Kumar. — DOI 10.15826/umj.2020.1.012. — Text : electronic // Ural Mathematical Journal. — 2020. — Volume 6. — № 1. — P. 147-152.
Abstract: Let G=(V,E) be a simple graph. A set S⊆V is a dominating set if every vertex in V∖S is adjacent to a vertex in S. The domination number of a graph G, denoted by γ(G) is the minimum cardinality of a dominating set of G. A set D⊆E is an edge dominating set if every edge in E∖D is adjacent to an edge in D. The edge domination number of a graph G, denoted by γ′(G) is the minimum cardinality of an edge dominating set of G. We characterize trees with domination number equal to twice edge domination number.
Keywords: EDGE DOMINATING SET
DOMINATING SET
TREES
URI: http://elar.urfu.ru/handle/10995/93060
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2020.1.012
Sponsorship: This work is supported by TATA-Realty and Infrastructure Limited.
The authors thank the anonymous referees for their helpful and constructive comments leading to improvements in the presentation of the paper.
Origin: Ural Mathematical Journal. 2020. Volume 6. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2020_6_1_147-152.pdf110 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons