Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92748
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKandoba, I. N.en
dc.contributor.authorKoz'min, I. V.en
dc.contributor.authorNovikov, D. A.en
dc.date.accessioned2020-10-20T16:37:01Z-
dc.date.available2020-10-20T16:37:01Z-
dc.date.issued2018-
dc.identifier.citationKandoba I. N. Admissible Controls in a Nonlinear Time-Optimal Problem with Phase Constraints / I. N. Kandoba, I. V. Koz'min, D. A. Novikov. — DOI 10.1016/j.ifacol.2018.11.390 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 251-255.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.390pdf
dc.identifier.other1good_DOI
dc.identifier.othercfe826cc-0c37-485d-a036-f521aada6ddapure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058246970m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92748-
dc.description.abstractThe paper is devoted to constructing admissible controls in a problem of optimal control by a nonlinear dynamic system under constraints on the current phase state. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. A problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system at the atmospheric part of the trajectory. The restrictions considered are due to the need to take into account the values of the dynamic velocity pressure, the attack angle and slip angle when the carrier moves in dense layers of the atmosphere. Such a problem is equivalent to a nonlinear time-optimal problem with phase constraints for carrier rockets of some classes. The algorithm for constructing admissible controls ensuring the fulfillment of additional phase constraints is suggested. The methodological basis of this algorithm is the application of some predictive control. This control is constructed in the problem without taking into account the constraints above. For a deterministic model of the atmosphere, such a predictive control is used to predict the values of a part of the phase state of the dynamic system at the next time. The prediction results are applied in the procedure of desired control construction. This procedure essentially takes into account specific features of the additional constraints. The results of numerical modeling are presented. © 2018en
dc.description.sponsorshipRussian Academy of Medical Sciencesen
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectADMISSIBLE CONTROLen
dc.subjectDYNAMIC SYSTEMen
dc.subjectITERATIVE METHODen
dc.subjectNONLINEAR CONTROL SYSTEMen
dc.subjectOPTIMAL CONTROLen
dc.subjectPHASE CONSTRAINTSen
dc.subjectPREDICTIVE CONTROLen
dc.subjectTIME-OPTIMAL CONTROLen
dc.subjectDYNAMICAL SYSTEMSen
dc.subjectEQUIVALENCE CLASSESen
dc.subjectMODEL PREDICTIVE CONTROLen
dc.subjectNONLINEAR CONTROL SYSTEMSen
dc.subjectNONLINEAR DYNAMICAL SYSTEMSen
dc.subjectORBITSen
dc.subjectROCKETSen
dc.subjectADMISSIBLE CONTROLen
dc.subjectOPTIMAL CONTROLSen
dc.subjectPHASE CONSTRAINTSen
dc.subjectPREDICTIVE CONTROLen
dc.subjectTIME OPTIMAL CONTROLen
dc.subjectITERATIVE METHODSen
dc.titleAdmissible Controls in a Nonlinear Time-Optimal Problem with Phase Constraintsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ifacol.2018.11.390-
dc.identifier.scopus85058246970-
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University named after the first President of Russia B.N.Yeltsin, ul. S. Kovalevskoi, 16, ul. Kuibysheva, 48, Yekaterinburg, 620990, 620026, Russian Federation
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University named after the first President of Russia B.N.Yeltsin, ul. S. Kovalevskoi, 16, ul. S. Kovalevskoi, 5, Yekaterinburg, 620990, 620002, Russian Federation
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation
local.contributor.employeeKandoba, I.N., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University named after the first President of Russia B.N.Yeltsin, ul. S. Kovalevskoi, 16, ul. Kuibysheva, 48, Yekaterinburg, 620990, 620026, Russian Federation
local.contributor.employeeKoz'min, I.V., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University named after the first President of Russia B.N.Yeltsin, ul. S. Kovalevskoi, 16, ul. S. Kovalevskoi, 5, Yekaterinburg, 620990, 620002, Russian Federation
local.contributor.employeeNovikov, D.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russian Federation
local.description.firstpage251-
local.description.lastpage255-
local.issue51-
local.volume32-
dc.identifier.wos000453278300049-
local.identifier.pure8422622-
local.identifier.eid2-s2.0-85058246970-
local.identifier.wosWOS:000453278300049-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.ifacol.2018.11.390.pdf429,62 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.