Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/92747
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Lutfullaeva, M. | en |
dc.contributor.author | Medvedeva, M. | en |
dc.contributor.author | Komotskiy, E. | en |
dc.contributor.author | Spasov, K. | en |
dc.contributor.author | PhD | en |
dc.date.accessioned | 2020-10-20T16:37:01Z | - |
dc.date.available | 2020-10-20T16:37:01Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Optimization of Sentiment Analysis Methods for classifying text comments of bank customers / M. Lutfullaeva, M. Medvedeva, E. Komotskiy, K. Spasov, et al.. — DOI 10.1016/j.ifacol.2018.11.353 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 55-60. | en |
dc.identifier.issn | 2405-8963 | - |
dc.identifier.other | https://doi.org/10.1016/j.ifacol.2018.11.353 | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 82598bb2-44b5-41e4-844d-79a1a4625f43 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058419848 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/92747 | - |
dc.description.abstract | A method of sentiment analysis of the text and its approbation in solving the problem of analysis of text comments left by the Bank's customers are performed. The proposed method consists in a combination of three approaches: rules-based, dictionaries and machine learning with a teacher. New method of text vectorization- tonal vectorization instead of classical ones, such as “bag-of-words ” and TF-IDF, is proposed. The text was classified by logistic regression with regularization. A series of experiments were carried out and the optimal value of the regularization parameter was found in terms of classification accuracy. © 2018 | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | IFAC-PapersOnLine | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | OPTIMIZATION | en |
dc.subject | SENTIMENT ANALYSIS | en |
dc.subject | SENTIMENT OF THE TEXT | en |
dc.subject | THE BAG-OF-WORDS | en |
dc.subject | TONAL DICTIONARY | en |
dc.subject | TONAL VECTORIZER | en |
dc.subject | ARTIFICIAL INTELLIGENCE | en |
dc.subject | LEARNING SYSTEMS | en |
dc.subject | OPTIMIZATION | en |
dc.subject | SENTIMENT ANALYSIS | en |
dc.subject | BAG OF WORDS | en |
dc.subject | CLASSIFICATION ACCURACY | en |
dc.subject | LOGISTIC REGRESSIONS | en |
dc.subject | OPTIMAL VALUES | en |
dc.subject | REGULARIZATION PARAMETERS | en |
dc.subject | SENTIMENT OF THE TEXT | en |
dc.subject | VECTORIZATION | en |
dc.subject | VECTORIZER | en |
dc.subject | DATA MINING | en |
dc.title | Optimization of Sentiment Analysis Methods for classifying text comments of bank customers | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 38641229 | - |
dc.identifier.doi | 10.1016/j.ifacol.2018.11.353 | - |
dc.identifier.scopus | 85058419848 | - |
local.affiliation | Ural Federal University. The First President Of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation | |
local.affiliation | Sofia University “St.Kliment Ohridski”, Sofia, Bulgaria | |
local.contributor.employee | Lutfullaeva, M., Ural Federal University. The First President Of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation | |
local.contributor.employee | Medvedeva, M., Ural Federal University. The First President Of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation | |
local.contributor.employee | Komotskiy, E., Ural Federal University. The First President Of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation | |
local.contributor.employee | Spasov, K., PhD, Sofia University “St.Kliment Ohridski”, Sofia, Bulgaria | |
local.description.firstpage | 55 | - |
local.description.lastpage | 60 | - |
local.issue | 51 | - |
local.volume | 32 | - |
dc.identifier.wos | 000453278300012 | - |
local.identifier.pure | 8417006 | - |
local.identifier.eid | 2-s2.0-85058419848 | - |
local.identifier.wos | WOS:000453278300012 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.1016-j.ifacol.2018.11.353.pdf | 515,96 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.