Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92711
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKublanov, V.en
dc.contributor.authorDolganov, A.en
dc.contributor.authorBadtieva, V.en
dc.contributor.authorAkopyan, D.en
dc.date.accessioned2020-10-20T16:36:53Z-
dc.date.available2020-10-20T16:36:53Z-
dc.date.issued2019-
dc.identifier.citationKublanov V. Towards simplifying assessment of athletes physical fitness: Evaluation of the total physical performance by means of machine learning / V. Kublanov, A. Dolganov, V. Badtieva, D. Akopyan. — DOI 10.5220/0007699105390544 // HEALTHINF 2019 - 12th International Conference on Health Informatics, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019. — 2019. — P. 539-544.en
dc.identifier.isbn9789897583537-
dc.identifier.otherhttps://doi.org/10.5220/0007699105390544pdf
dc.identifier.other1good_DOI
dc.identifier.other7d4dd41e-4a2c-4506-b735-5ecf7cee6889pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85064609915m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92711-
dc.description.abstractThe paper describes the methodology for the evaluation of the total physical performance of athletes on the basis of simultaneously recorded signals of stabilography and heart rate variability. An objective assessment of the level of physical performance was carried out using testing on the bicycle ergometer. The use of genetic programming and linear discriminant analysis allowed obtaining the set of diagnostically significant features. The set of diagnostically significant features is able to determine the level of physical fitness using only data from stabilographic studies and heart rate variability with an accuracy of at least 97%. Strength and weaknesses of the proposed approach are discussed. © 2019 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSciTePressen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceHEALTHINF 2019 - 12th International Conference on Health Informatics, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019en
dc.subjectGENETIC PROGRAMMINGen
dc.subjectHEART RATE VARIABILITYen
dc.subjectMACHINE LEARNINGen
dc.subjectPHYSICAL FITNESSen
dc.subjectSTABILOGRAPHYen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectDISCRIMINANT ANALYSISen
dc.subjectGENETIC ALGORITHMSen
dc.subjectGENETIC PROGRAMMINGen
dc.subjectHEARTen
dc.subjectLEARNING SYSTEMSen
dc.subjectMACHINE LEARNINGen
dc.subjectMEDICAL INFORMATICSen
dc.subjectHEART RATE VARIABILITYen
dc.subjectLINEAR DISCRIMINANT ANALYSISen
dc.subjectOBJECTIVE ASSESSMENTen
dc.subjectPHYSICAL FITNESSen
dc.subjectPHYSICAL PERFORMANCEen
dc.subjectRECORDED SIGNALSen
dc.subjectSTABILOGRAPHYen
dc.subjectHEALTHen
dc.titleTowards simplifying assessment of athletes physical fitness: Evaluation of the total physical performance by means of machine learningen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.5220/0007699105390544-
dc.identifier.scopus85064609915-
local.affiliationResearch Medical and Biological Engineering Centre of High Technologies, Ural Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.affiliationMoscow Research Center of Medical Rehabilitation and Sports Medicine, Zemlyanoi val 53, Moscow, 105120, Russian Federation
local.affiliationSechenov University, Trubeczkaya 8, Moscow, 119991, Russian Federation
local.contributor.employeeKublanov, V., Research Medical and Biological Engineering Centre of High Technologies, Ural Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeDolganov, A., Research Medical and Biological Engineering Centre of High Technologies, Ural Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeBadtieva, V., Moscow Research Center of Medical Rehabilitation and Sports Medicine, Zemlyanoi val 53, Moscow, 105120, Russian Federation, Sechenov University, Trubeczkaya 8, Moscow, 119991, Russian Federation
local.contributor.employeeAkopyan, D., Moscow Research Center of Medical Rehabilitation and Sports Medicine, Zemlyanoi val 53, Moscow, 105120, Russian Federation
local.description.firstpage539-
local.description.lastpage544-
dc.identifier.wos000700363100063-
local.identifier.pure9301948-
local.identifier.eid2-s2.0-85064609915-
local.identifier.wosWOS:000700363100063-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.5220-0007699105390544.pdf316,76 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.