Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92706
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDolganov, A.en
dc.contributor.authorKublanov, V.en
dc.date.accessioned2020-10-20T16:36:53Z-
dc.date.available2020-10-20T16:36:53Z-
dc.date.issued2018-
dc.identifier.citationDolganov A. Towards a decision support system for disorders of the cardiovascular system diagnosing and evaluation of the treatment efficiency / A. Dolganov, V. Kublanov. — DOI 10.5220/0006753407270733 // HEALTHINF 2018 - 11th International Conference on Health Informatics, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018. — 2018. — Iss. 5. — P. 727-733.en
dc.identifier.isbn9789897582813-
dc.identifier.otherhttps://doi.org/10.5220/0006753407270733pdf
dc.identifier.other2-3good_DOI
dc.identifier.other3803db38-9454-41b1-894c-60f43039183fpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85049888078m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92706-
dc.description.abstractThe study describes a preliminary stage of the decision support system development for cardiovascular system disorders. As the clinical model of the disorders, the arterial hypertension was used. The study consisted of two steps: diagnosing of the arterial hypertension and an evaluation of the treatment efficiency during the neuro-electrostimulation application. For the diagnosing part, a clinical study was conducted involving heart rate variability signals recording while performing tilt-test functional load. Performance of different machine learning techniques and feature selection strategies in task of binary classification (healthy volunteers and patients suffering from arterial hypertension) were compared. The genetic programming feature selection and quadratic discriminant analysis classifier reached the highest classification accuracy. Best feature combinations were used to evaluate a treatment efficiency. The results indicate the potential of the proposed decision support system. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserveden
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSciTePressen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceHEALTHINF 2018 - 11th International Conference on Health Informatics, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2018en
dc.subjectARTERIAL HYPERTENSIONen
dc.subjectDECISION SUPPORTen
dc.subjectFEATURE SELECTIONen
dc.subjectHEART RATE VARIABILITYen
dc.subjectMACHINE LEARNINGen
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectCARDIOLOGYen
dc.subjectCARDIOVASCULAR SYSTEMen
dc.subjectDIAGNOSISen
dc.subjectDISCRIMINANT ANALYSISen
dc.subjectEFFICIENCYen
dc.subjectFEATURE EXTRACTIONen
dc.subjectGENETIC ALGORITHMSen
dc.subjectGENETIC PROGRAMMINGen
dc.subjectLEARNING SYSTEMSen
dc.subjectMEDICAL INFORMATICSen
dc.subjectARTERIAL HYPERTENSIONen
dc.subjectBINARY CLASSIFICATIONen
dc.subjectCLASSIFICATION ACCURACYen
dc.subjectFEATURE COMBINATIONen
dc.subjectHEART RATE VARIABILITY SIGNALSen
dc.subjectMACHINE LEARNING TECHNIQUESen
dc.subjectQUADRATIC DISCRIMINANT ANALYSISen
dc.subjectTREATMENT EFFICIENCYen
dc.subjectDECISION SUPPORT SYSTEMSen
dc.titleTowards a decision support system for disorders of the cardiovascular system diagnosing and evaluation of the treatment efficiencyen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.5220/0006753407270733-
dc.identifier.scopus85049888078-
local.affiliationUral Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeDolganov, A., Ural Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeKublanov, V., Ural Federal University, Mira 19, Yekaterinburg, 620002, Russian Federation
local.description.firstpage727-
local.description.lastpage733-
local.issue5-
local.identifier.pure7769053-
local.identifier.eid2-s2.0-85049888078-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.5220-0006753407270733.pdf156,96 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.