Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92694
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSadykov, V.en
dc.contributor.authorPikalova, E.en
dc.contributor.authorEremeev, N.en
dc.contributor.authorShubin, A.en
dc.contributor.authorZilberberg, I.en
dc.contributor.authorProsvirin, I.en
dc.contributor.authorSadovskaya, E.en
dc.contributor.authorBukhtiyarov, A.en
dc.date.accessioned2020-10-20T16:36:51Z-
dc.date.available2020-10-20T16:36:51Z-
dc.date.issued2020-
dc.identifier.citationOxygen transport in Pr nickelates: Elucidation of atomic-scale features / V. Sadykov, E. Pikalova, N. Eremeev, A. Shubin, et al.. — DOI 10.1016/j.ssi.2019.115155 // Solid State Ionics. — 2020. — Iss. 344. — 115155.en
dc.identifier.issn1672738-
dc.identifier.otherhttps://doi.org/10.1016/j.ssi.2019.115155pdf
dc.identifier.other1good_DOI
dc.identifier.otherff9ae69d-e2f2-46a6-9a20-5bfe5db9438bpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85075285872m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92694-
dc.description.abstractPr2NiO4+δ oxide with a layered Ruddlesden–Popper structure is a promising material for SOFC cathodes and oxygen separation membranes due to a high oxygen mobility provided by the cooperative mechanism of oxygen migration involving both interstitial oxygen species and apical oxygen of the NiO6 octahedra. Doping by Ca improves thermodynamic stability and increases electronic conductivity of Pr2 − xCaxNiO4+δ, but decreases oxygen mobility due to decreasing the oxygen excess and appearing of 1–2 additional slow diffusion channels at x ≥ 0.4, probably, due to hampering of cooperative mechanism of migration. However, atomic-scale features of these materials determining oxygen migration require further studies. In this work characteristics of oxygen diffusion in Pr2 − xCaxNiO4+δ (x = 0–0.6) are compared with results of the surface analysis by X-ray photoelectron spectroscopy and modeling of the interstitial oxygen migration by the plane-wave density functional theory calculations. According to the X-ray photoelectron spectroscopy data, the surface is enriched by Pr for undoped sample and by Ca for doped ones. The O1s peak at ~531 eV corresponding to a weakly bound form of surface oxygen located at Pr cations disappears at ~500 °C. Migration of interstitial oxygen was modeled for a I4/mmm phase of Pr2NiO4+δ. The interstitial oxygen anion repulses the apical one in the NiO6 octahedra pushing it into the tetrahedral site between Pr cations. The calculated activation barrier of this migration is equal to 0.585 eV, which reasonably agrees with the experimental value of 0.83 eV obtained by the oxygen isotope exchange method. At the same time, for the model compound Ca2NiO4+δ, obtained by isomorphic substitution of Pr by Ca in Pr2NiO4+δ, calculations implied formation of the peroxide ion comprised of interstitial and lattice oxygen species not revealed in the case of incomplete substitution (up to PrCaNiO4+δ composition). Hence, calculations in the framework of the plane-wave density functional theory provide a realistic estimation of specificity of oxygen migration features in Pr2NiO4+δ doped by alkaline-earth metals. © 2019 Elsevier B.V.en
dc.description.sponsorshipRussian Science Foundation, RSF: 16-13-00112en
dc.description.sponsorshipSupport by Russian Science Foundation (Project 16-13-00112 ) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.relationinfo:eu-repo/grantAgreement/RSF//16-13-00112en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSolid State Ionicsen
dc.subjectA0340Ken
dc.subjectA3365Fen
dc.subjectA6170Ben
dc.subjectA6170Ten
dc.subjectA6630Den
dc.subjectA7511Men
dc.subjectDENSITY FUNCTIONAL THEORY CALCULATIONSen
dc.subjectOXYGEN DIFFUSIONen
dc.subjectPR2−XCAXNIO4en
dc.subjectX-RAY PHOTOELECTRON SPECTROSCOPYen
dc.subjectCALCIUMen
dc.subjectDIFFUSION IN GASESen
dc.subjectELASTIC WAVESen
dc.subjectNICKEL COMPOUNDSen
dc.subjectOXYGENen
dc.subjectPHOTOELECTRONSen
dc.subjectPHOTONSen
dc.subjectPOSITIVE IONSen
dc.subjectPRASEODYMIUMen
dc.subjectSOLID OXIDE FUEL CELLS (SOFC)en
dc.subjectSURFACE ANALYSISen
dc.subjectWAVE PROPAGATIONen
dc.subjectX RAY PHOTOELECTRON SPECTROSCOPYen
dc.subjectA0340Ken
dc.subjectA3365Fen
dc.subjectA6170Ben
dc.subjectA6170Ten
dc.subjectA6630Den
dc.subjectA7511Men
dc.subjectOXYGEN DIFFUSIONen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.titleOxygen transport in Pr nickelates: Elucidation of atomic-scale featuresen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ssi.2019.115155-
dc.identifier.scopus85075285872-
local.affiliationFederal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation
local.affiliationNovosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.affiliationInstitute of High Temperature Electrochemistry UB RAS, Akademicheskaya st. 20, Yekaterinburg, 620137, Russian Federation
local.affiliationUral Federal University, Mira st. 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeSadykov, V., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.contributor.employeePikalova, E., Institute of High Temperature Electrochemistry UB RAS, Akademicheskaya st. 20, Yekaterinburg, 620137, Russian Federation, Ural Federal University, Mira st. 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeEremeev, N., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation
local.contributor.employeeShubin, A., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.contributor.employeeZilberberg, I., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.contributor.employeeProsvirin, I., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.contributor.employeeSadovskaya, E., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090, Russian Federation
local.contributor.employeeBukhtiyarov, A., Federal Research Center Boreskov Institute of Catalysis, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation
local.issue344-
dc.identifier.wos000509787200023-
local.identifier.pure11326807-
local.description.order115155-
local.identifier.eid2-s2.0-85075285872-
local.fund.rsf16-13-00112-
local.identifier.wosWOS:000509787200023-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.ssi.2019.115155.pdf1,65 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.