Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92666
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorAlexandrova, I. V.en
dc.date.accessioned2020-10-20T16:36:44Z-
dc.date.available2020-10-20T16:36:44Z-
dc.date.issued2020-
dc.identifier.citationAlexandrov D. V. From nucleation and coarsening to coalescence in metastable liquids / D. V. Alexandrov, I. V. Alexandrova. — DOI 10.1098/rsta.2019.0247 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2020. — Vol. 2171. — Iss. 378. — 247.en
dc.identifier.issn1364503X-
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2019.0247pdf
dc.identifier.other1good_DOI
dc.identifier.othera86e0c74-4db0-4f81-aed9-83ae5b78f693pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85083308943m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92666-
dc.description.abstractThe transition of a metastable liquid (supersaturated solution or supercooled melt) occurring from the intermediate stage (where the crystals nucleate and grow) to the concluding stage (where the larger particles evolve at the expense of the dissolution of smaller particles) is theoretically described, with allowance for various mass transfer mechanisms (reaction on the interface surface, volume diffusion, grain-boundary diffusion, diffusion along the dislocations) arising at the stage of Ostwald ripening (coalescence). The initial distribution function (its 'tail') for the concluding stage (forming as a result of the evolution of a particulate assemblage during the intermediate stage) is taken into account to determine the particle-size distribution function at the stage of Ostwald ripening. This modified distribution function essentially differs from the universal Lifshitz-Slyozov (LS) solutions for several mass transfer mechanisms. Namely, its maximum lies below and is shifted to the left in comparison with the LS asymptotic distribution function. In addition, the right branch of the particle-size distribution lies above and is shifted to the right of the LS blocking point. It is shown that the initial 'tail' of the particle-size distribution function completely determines its behaviour at the concluding stage of Ostwald ripening. The present theory agrees well with experimental data. © 2020 The Author(s) Published by the Royal Society. All rights reserved.en
dc.description.sponsorshipRussian Science Foundation, RSF: 18-19-00008en
dc.description.sponsorshipData accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the present research article. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (grant no. 18-19-00008).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//18-19-00008en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectCRYSTAL GROWTHen
dc.subjectNUCLEATIONen
dc.subjectOSTWALD RIPENINGen
dc.subjectPARTICLE-SIZE DISTRIBUTION FUNCTIONen
dc.subjectPHASE TRANSFORMATIONSen
dc.subjectCOALESCENCEen
dc.subjectCOARSENINGen
dc.subjectCRYSTALLIZATIONen
dc.subjectDIFFUSIONen
dc.subjectGRAIN BOUNDARIESen
dc.subjectLIGHT TRANSMISSIONen
dc.subjectOSTWALD RIPENINGen
dc.subjectPARTICLE SIZEen
dc.subjectPARTICLE SIZE ANALYSISen
dc.subjectREACTION INTERMEDIATESen
dc.subjectSIZE DISTRIBUTIONen
dc.subjectSURFACE REACTIONSen
dc.subjectASYMPTOTIC DISTRIBUTIONSen
dc.subjectGRAIN-BOUNDARY DIFFUSIONen
dc.subjectINTERFACE SURFACESen
dc.subjectINTERMEDIATE STAGEen
dc.subjectMASS TRANSFER MECHANISMen
dc.subjectMETASTABLE LIQUIDen
dc.subjectSUPERCOOLED MELTen
dc.subjectSUPERSATURATED SOLUTIONSen
dc.subjectDISTRIBUTION FUNCTIONSen
dc.titleFrom nucleation and coarsening to coalescence in metastable liquidsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2019.0247-
dc.identifier.scopus85083308943-
local.affiliationDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeAlexandrova, I.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.issue378-
local.volume2171-
dc.identifier.wos000526681700013-
local.identifier.pure12664984-
local.description.order247-
local.identifier.eid2-s2.0-85083308943-
local.fund.rsf18-19-00008-
local.identifier.wosWOS:000526681700013-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1098-rsta.2019.0247.pdf759,84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.