Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/92644
Title: Effects of irradiation of ZnO/CdS/Cu2ZnSnSe4/Mo/glass solar cells by 10 MeV electrons on photoluminescence spectra
Authors: Sulimov, M. A.
Sarychev, M. N.
Yakushev, M. V.
Márquez-Prieto, J.
Forbes, I.
Ivanov, V. Y.
Edwards, P. R.
Mudryi, A. V.
Krustok, J.
Martin, R. W.
Issue Date: 2021
Publisher: Elsevier Ltd
Citation: Effects of irradiation of ZnO/CdS/Cu2ZnSnSe4/Mo/glass solar cells by 10 MeV electrons on photoluminescence spectra / M. A. Sulimov, M. N. Sarychev, M. V. Yakushev, J. Márquez-Prieto, et al.. — DOI 10.1016/j.mssp.2020.105301 // Materials Science in Semiconductor Processing. — 2021. — Iss. 121. — 105301.
Abstract: Solar cells with the structure ZnO/CdS/Cu2ZnSnSe4/Mo/glass were studied by photoluminescence (PL) before and after irradiation with a dose of 1.8 × 1015 cm−2 and then 5.4 × 1015 cm−2 of 10 MeV electrons carried out at 77 K in liquid nitrogen bath. The low temperature PL spectra before irradiation revealed two bands, a broad and asymmetrical dominant band at 0.94 eV from the CZTSe layer and a lower intensity high energy band (HEB) at 1.3 eV, generated by defects in the CdS buffer layer. Analysis of the excitation intensity and temperature dependencies suggested that the dominant band is free-to-bound (FB): the recombination of free electrons with holes localised at acceptors whose energy levels are affected by potential fluctuations of the valence band due to high concentrations of randomly distributed charged defects. Irradiation did not induce any new band in the examined spectral range (from 0.5 μm to 1.65 μm) but reduced the intensity of both bands in the PL spectra measured at 77 K without warming the cells. The higher the dose the greater was the reduction. After this the cells were warmed to 300 K and moved to a variable temperature cryostat to measure temperature dependencies of the PL spectra. After irradiation the red shift rate of the FB band with temperature rise was found to increase. Electrons displace atoms in the lattice creating primary defects: interstitials and vacancies. These defects recombine during and shortly after irradiation forming secondary defect complexes which work as deep non-radiative traps of charge carriers reducing the PL intensity and increasing the rate of the temperature red shift. Irradiation did not affect the mean depth of the band tails estimated from the shape of the low energy side of the dominant PL band. © 2020 Elsevier Ltd
Keywords: BUFFER LAYERS
CADMIUM SULFIDE
CARRIER MOBILITY
DEFECTS
DOPPLER EFFECT
ELECTRONS
II-VI SEMICONDUCTORS
LIQUEFIED GASES
MOLYBDENUM
OXIDE MINERALS
PHOTOLUMINESCENCE
RADIATION
RED SHIFT
SOLAR CELLS
TEMPERATURE
ZINC OXIDE
EXCITATION INTENSITY
HIGH ENERGY BANDS
PHOTOLUMINESCENCE SPECTRUM
POTENTIAL FLUCTUATIONS
RANDOMLY DISTRIBUTED
SECONDARY DEFECT
TEMPERATURE DEPENDENCIES
VARIABLE TEMPERATURE
IRRADIATION
URI: http://hdl.handle.net/10995/92644
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85088740104
PURE ID: 13655594
ISSN: 13698001
DOI: 10.1016/j.mssp.2020.105301
metadata.dc.description.sponsorship: European Commission, EC
European Regional Development Fund, FEDER: TK141
Ministry of Science and Higher Education of the Russian Federation: АААА-А18-118020290104-2
The research was supported by the Ministry of Science and Higher Education of the Russian Federation (topic “Spin” № АААА-А18-118020290104-2 ) and the European Union through the European Regional Development Fund, Project TK141 .
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.mssp.2020.105301.pdf1,57 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.