Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRigatos, G.en
dc.contributor.authorWira, P.en
dc.contributor.authorMelkikh, A.en
dc.date.accessioned2020-10-20T16:36:06Z-
dc.date.available2020-10-20T16:36:06Z-
dc.date.issued2019-
dc.identifier.citationRigatos G. Nonlinear optimal control for the synchronization of biological neurons under time-delays / G. Rigatos, P. Wira, A. Melkikh. — DOI 10.1007/s11571-018-9510-4 // Cognitive Neurodynamics. — 2019. — Vol. 1. — Iss. 13. — P. 89-103.en
dc.identifier.issn1871-4080-
dc.identifier.otherhttps://link.springer.com/content/pdf/10.1007/s11571-018-9510-4.pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other7465d93e-b281-4b8f-973f-e075a6ac2c38pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85055497634m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92517-
dc.description.abstractThe article proposes a nonlinear optimal control method for synchronization of neurons that exhibit nonlinear dynamics and are subject to time-delays. The model of the Hindmarsh–Rose (HR) neurons is used as a case study. The dynamic model of the coupled HR neurons undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. The linearization procedure relies on Taylor series expansion of the model and on computation of the associated Jacobian matrices. For the approximately linearized model of the coupled HR neurons an H-infinity controller is designed. For the selection of the controller’s feedback gain an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. The stability properties of the control loop are proven through Lyapunov analysis. First, it is shown that the H-infinity tracking performance criterion is satisfied. Moreover, it is proven that the control loop is globally asymptotically stable. © 2018, Springer Nature B.V.en
dc.description.sponsorshipFunding was provided by Unit of Industrial Automation/Industrial Systems Institute (Grant No. Ref 5805 - Advances in applied nonlinear optimal control).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Netherlandsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceCognitive Neurodynamicsen
dc.subjectAPPROXIMATE LINEARIZATIONen
dc.subjectBIOLOGICAL NEURONSen
dc.subjectGLOBAL STABILITYen
dc.subjectH-INFINITY CONTROLen
dc.subjectJACOBIAN MATRICESen
dc.subjectLYAPUNOV ANALYSISen
dc.subjectNONLINEAR OPTIMAL CONTROLen
dc.subjectRICCATI EQUATIONen
dc.subjectTAYLOR SERIES EXPANSIONen
dc.subjectTIME-DELAYSen
dc.subjectALGORITHMen
dc.subjectARTICLEen
dc.subjectCELL SYNCHRONIZATIONen
dc.subjectFEEDBACK SYSTEMen
dc.subjectLYAPUNOV ANALYSISen
dc.subjectNERVE CELLen
dc.subjectNONLINEAR OPTIMAL CONTROLen
dc.subjectNONLINEAR SYSTEMen
dc.subjectSTATISTICAL ANALYSISen
dc.subjectTIMEen
dc.subjectTIME DELAYen
dc.titleNonlinear optimal control for the synchronization of biological neurons under time-delaysen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s11571-018-9510-4-
dc.identifier.scopus85055497634-
local.affiliationUnit of Industrial Automation, Industrial Systems Institute, Rion, Patras, 26504, Greece
local.affiliationLaboratoire MIPS, Université d’ Haute Alsace, Mulhouse, 68093, France
local.affiliationInstitute of Physics and Technology, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeRigatos, G., Unit of Industrial Automation, Industrial Systems Institute, Rion, Patras, 26504, Greece
local.contributor.employeeWira, P., Laboratoire MIPS, Université d’ Haute Alsace, Mulhouse, 68093, France
local.contributor.employeeMelkikh, A., Institute of Physics and Technology, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.description.firstpage89-
local.description.lastpage103-
local.issue13-
local.volume1-
dc.identifier.wos000456184400007-
local.identifier.pure8861862-
local.identifier.eid2-s2.0-85055497634-
local.identifier.wosWOS:000456184400007-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1007-s11571-018-9510-4.pdf2,4 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.