Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92490
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNikitin, A. D.en
dc.contributor.authorAbaimov, N. A.en
dc.contributor.authorButakov, E. B.en
dc.contributor.authorBurdukov, A. P.en
dc.contributor.authorRyzhkov, A. F.en
dc.date.accessioned2020-10-20T16:35:59Z-
dc.date.available2020-10-20T16:35:59Z-
dc.date.issued2019-
dc.identifier.citationEffect of steam supply to the air-blown gasifier on hot syngas desulphurization / A. D. Nikitin, N. A. Abaimov, E. B. Butakov, A. P. Burdukov, et al.. — DOI 10.1088/1742-6596/1369/1/012029 // Journal of Physics: Conference Series. — 2019. — Vol. 1. — Iss. 1369. — 12029.en
dc.identifier.issn1742-6588-
dc.identifier.otherhttps://iopscience.iop.org/article/10.1088/1742-6596/1369/1/012029/pdfpdf
dc.identifier.other1good_DOI
dc.identifier.other0a4e5ce3-72ca-4e33-8d09-fed49a6a224epure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85079341533m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92490-
dc.description.abstractThe IGCC technology serves to efficiently produce thermal and electrical energy with minimal impact on the environment. In operating IGCC, wet desulphurization is used at temperatures below 200°C. The use of hot desulphurization at temperatures around 500°C will significantly improve IGCC efficiency. The preferred sorbent for hot gas cleaning is ZnO. At temperature of 450-500°C, ZnO begins decomposing because of reactions with syngas components (primarily hydrogen). Steam impedes reaction of ZnO with H2 and increases ZnO thermal stability. Syngas H2/H2O ratio is determined by gasifier operation mode. The purpose of this work is to determine maximum temperature of hot gas cleaning depending on condition of ZnO-sorbent thermal stability and steam-air-blown mechanically activated coal gasifier operation mode. To determine the effect of steam supply to syngas composition, experiments were performed on entrained-flow gasifier (1 MW). Experimental results were processed using thermodynamic analysis to determine idealized syngas composition and CFD-modeling to determine real experiment process parameters. Syngas H2O content was determined by CFD-modeling results. Study of ZnO-sorbent thermal stability depending on H2 concentration and syngas H2/H2O ratio was performed by TGA. As a result of experimentally confirmed thermodynamic calculations, ZnO-sorbent thermal stability was found to increase to 815°C due to steam dilution. © Published under licence by IOP Publishing Ltd.en
dc.description.sponsorshipThe work was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Physics Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Physics: Conference Seriesen
dc.subjectAIR CLEANERSen
dc.subjectCOMPUTATIONAL FLUID DYNAMICSen
dc.subjectDESULFURIZATIONen
dc.subjectENERGY CONSERVATIONen
dc.subjectHEAT TRANSFERen
dc.subjectII-VI SEMICONDUCTORSen
dc.subjectPOLLUTION CONTROLen
dc.subjectSORBENTSen
dc.subjectSORPTIONen
dc.subjectSTABILITYen
dc.subjectSTEAMen
dc.subjectTEMPERATUREen
dc.subjectTHERMOANALYSISen
dc.subjectTHERMODYNAMIC STABILITYen
dc.subjectZINC OXIDEen
dc.subjectELECTRICAL ENERGYen
dc.subjectENTRAINED FLOW GASIFIERSen
dc.subjectIMPACT ON THE ENVIRONMENTen
dc.subjectMAXIMUM TEMPERATUREen
dc.subjectPROCESS PARAMETERSen
dc.subjectSYNGAS COMPOSITIONen
dc.subjectTHERMO DYNAMIC ANALYSISen
dc.subjectTHERMODYNAMIC CALCULATIONSen
dc.subjectSYNTHESIS GASen
dc.titleEffect of steam supply to the air-blown gasifier on hot syngas desulphurizationen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1088/1742-6596/1369/1/012029-
dc.identifier.scopus85079341533-
local.affiliationDepartment of Thermal Power Stations, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation
local.affiliationLaboratory of Ecological Problems of Thermal Power Engineering, Kutateladze Institute of Thermophysics SB RAS, 1 Academician Lavrentyev Avenue, Novosibirsk, Russian Federation
local.contributor.employeeNikitin, A.D., Department of Thermal Power Stations, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation
local.contributor.employeeAbaimov, N.A., Department of Thermal Power Stations, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation
local.contributor.employeeButakov, E.B., Laboratory of Ecological Problems of Thermal Power Engineering, Kutateladze Institute of Thermophysics SB RAS, 1 Academician Lavrentyev Avenue, Novosibirsk, Russian Federation
local.contributor.employeeBurdukov, A.P., Laboratory of Ecological Problems of Thermal Power Engineering, Kutateladze Institute of Thermophysics SB RAS, 1 Academician Lavrentyev Avenue, Novosibirsk, Russian Federation
local.contributor.employeeRyzhkov, A.F., Department of Thermal Power Stations, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation
local.issue1369-
local.volume1-
local.identifier.pure12226339-
local.description.order12029-
local.identifier.eid2-s2.0-85079341533-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1088-1742-6596-1369-1-012029.pdf1,04 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.