Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/92260
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPlaksin, A.en
dc.date.accessioned2020-10-20T16:35:03Z-
dc.date.available2020-10-20T16:35:03Z-
dc.date.issued2019-
dc.identifier.citationPlaksin A. On Hamilton-Jacobi-Bellman-Isaacs Equation for Time-Delay Systems / A. Plaksin. — DOI 10.1016/j.ifacol.2019.12.220 // IFAC-PapersOnLine. — 2019. — Vol. 18. — Iss. 52. — P. 138-143.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2019.12.220pdf
dc.identifier.other1good_DOI
dc.identifier.other7093ef6b-f670-4526-8ebd-85b176090fafpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85081380175m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92260-
dc.description.abstractThe paper deals with a two-person zero-sum differential game for a dynamical system which motion is described by a delay differential equation under an initial condition defined by a piecewise continuous function. For the value functional of this game, we derive the Hamilton-Jacobi type equation with coinvariant derivatives. It is proved that, if the solution of this equation satisfies certain smoothness conditions, then it coincides with the value functional. On the other hand, it is proved that, at the points of coinvariant differentiability, the value functional satisfies the derived Hamilton-Jacobi equation. Therefore, this equation can be called the Hamilton-Jacobi-Bellman-Isaacs equation for time-delay systems. © 2019. The Authors. Published by Elsevier Ltd. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectCOINVARIANT DERIVATIVESen
dc.subjectDELAY SYSTEMen
dc.subjectDIFFERENTIAL GAMEen
dc.subjectHAMILTON-JACOBI EQUATIONen
dc.subjectOPTIMAL STRATEGIESen
dc.subjectVALUE FUNCTIONALen
dc.subjectDELAY CONTROL SYSTEMSen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.subjectDYNAMICAL SYSTEMSen
dc.subjectGAME THEORYen
dc.subjectMECHANICSen
dc.subjectTIMING CIRCUITSen
dc.subjectDELAY SYSTEMSen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectHAMILTON - JACOBI EQUATIONSen
dc.subjectOPTIMAL STRATEGIESen
dc.subjectVALUE FUNCTIONALen
dc.subjectTIME DELAYen
dc.titleOn Hamilton-Jacobi-Bellman-Isaacs Equation for Time-Delay Systemsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ifacol.2019.12.220-
dc.identifier.scopus85081380175-
local.affiliationN.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ural Federal University, Mira str. 19 S. Kovalevskaya Str. 16, Yekaterinburg, 620990, Russian Federation
local.contributor.employeePlaksin, A., N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ural Federal University, Mira str. 19 S. Kovalevskaya Str. 16, Yekaterinburg, 620990, Russian Federation
local.description.firstpage138-
local.description.lastpage143-
local.issue52-
local.volume18-
dc.identifier.wos000504412200025-
local.identifier.pure11784835-
local.identifier.eid2-s2.0-85081380175-
local.identifier.wosWOS:000504412200025-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.1016-j.ifacol.2019.12.220.pdf470,88 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.