Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomoyunov, M.en
dc.contributor.authorPlaksin, A.en
dc.date.accessioned2020-10-20T16:35:02Z-
dc.date.available2020-10-20T16:35:02Z-
dc.date.issued2018-
dc.identifier.citationGomoyunov M. On Hamilton-Jacobi equations for neutral-type differential games⁎ / M. Gomoyunov, A. Plaksin. — DOI 10.1016/j.ifacol.2018.07.218 // IFAC-PapersOnLine. — 2018. — Vol. 14. — Iss. 51. — P. 171-176.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.07.218pdf
dc.identifier.other1good_DOI
dc.identifier.otherc40b04ac-2b2c-4667-b35d-194b315d3d2apure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85052450368m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92257-
dc.description.abstractWe consider a two-person zero-sum differential game in which a motion of the dynamical system is described by neutral-type functional-differential equations in Hale's form and the quality index estimates a motion history realized up to the terminal instant of time and includes integral estimations of control realizations of the players. The formalization of the game in the class of pure positional strategies is given, the corresponding notions of the value functional and optimal control strategies of the players are defined. For the value functional, we derive a Hamilton-Jacobi type equation with coinvariant derivatives. It is proved that, if a solution of this equation satisfies certain smoothness conditions, then it coincides with the value functional. On the other hand, it is proved that, at the points of coinvariant differentiability, the value functional satisfies the derived Hamilton-Jacobi equation. Therefore, this equation can be called the Hamilton-Jacobi-Bellman-Isaacs equation for neutral-type systems. © 2018en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectCOINVARIANT DERIVATIVESen
dc.subjectDIFFERENTIAL GAMEen
dc.subjectHAMILTON-JACOBI EQUATIONen
dc.subjectNEUTRAL-TYPE SYSTEMen
dc.subjectOPTIMAL STRATEGIESen
dc.subjectVALUE FUNCTIONALen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.subjectDYNAMICAL SYSTEMSen
dc.subjectGAME THEORYen
dc.subjectMECHANICSen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectHAMILTON - JACOBI EQUATIONSen
dc.subjectNEUTRAL TYPE SYSTEMSen
dc.subjectOPTIMAL STRATEGIESen
dc.subjectVALUE FUNCTIONALen
dc.subjectQUALITY CONTROLen
dc.titleOn Hamilton-Jacobi equations for neutral-type differential games⁎en
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi35771305-
dc.identifier.doi10.1016/j.ifacol.2018.07.218-
dc.identifier.scopus85052450368-
local.affiliationN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ural Federal University, S.Kovalevskaya Str. 16, Mira str. 19, Yekaterinburg, 620990, Russian Federation
local.contributor.employeeGomoyunov, M., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ural Federal University, S.Kovalevskaya Str. 16, Mira str. 19, Yekaterinburg, 620990, Russian Federation
local.contributor.employeePlaksin, A., N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ural Federal University, S.Kovalevskaya Str. 16, Mira str. 19, Yekaterinburg, 620990, Russian Federation
local.description.firstpage171-
local.description.lastpage176-
local.issue51-
local.volume14-
dc.identifier.wos000443033900031-
local.identifier.pure7759239-
local.identifier.eid2-s2.0-85052450368-
local.identifier.wosWOS:000443033900031-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.07.218.pdf451,73 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.