Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTuretsky, V.en
dc.contributor.authorHayoun, S. Y.en
dc.contributor.authorShima, T.en
dc.contributor.authorTarasyev, A.en
dc.date.accessioned2020-10-20T16:34:58Z-
dc.date.available2020-10-20T16:34:58Z-
dc.date.issued2018-
dc.identifier.citationTuretsky V. On the value of differential game with asymmetric control constraints / V. Turetsky, S. Y. Hayoun, T. Shima, A. Tarasyev. — DOI 10.1016/j.ifacol.2018.11.463 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 799-804.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.463pdf
dc.identifier.other1good_DOI
dc.identifier.otherbc43e042-3da2-4f51-85ed-5a51537c0f57pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058184323m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92242-
dc.description.abstractA differential game with asymmetric constraints on the players’ controls and an asymmetric cost functional is considered. In this game hard geometric constraints are imposed on the maximizer, whereas the minimizer is soft-constrained by including the control effort term into the cost functional. The sufficient condition is derived, subject to which the program maximin is the game value. In the proof, it is shown that the program maximin is the generalized solution of the Hamilton-Jacobi-Bellman partial differential equation. Examples are presented. © 2018en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectDIFFERENTIAL GAMEen
dc.subjectGAME VALUEen
dc.subjectISAACS EQUATIONen
dc.subjectPROGRAM MAXIMINen
dc.subjectCONTROL CONSTRAINTen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectGAME VALUEen
dc.subjectGENERALIZED SOLUTIONen
dc.subjectGEOMETRIC CONSTRAINTen
dc.subjectHAMILTON JACOBI BELLMANen
dc.subjectISAACS EQUATIONen
dc.subjectMAXIMINen
dc.subjectGAME THEORYen
dc.titleOn the value of differential game with asymmetric control constraintsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ifacol.2018.11.463-
dc.identifier.scopus85058184323-
local.affiliationOrt Braude College of Engineering, Karmiel, Israel
local.affiliationRAFAEL Advanced Defense Systems, Haifa, Israel
local.affiliationTechnion – Israel Institute of Technology, Haifa, Israel
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeTuretsky, V., Ort Braude College of Engineering, Karmiel, Israel
local.contributor.employeeHayoun, S.Y., RAFAEL Advanced Defense Systems, Haifa, Israel
local.contributor.employeeShima, T., Technion – Israel Institute of Technology, Haifa, Israel
local.contributor.employeeTarasyev, A., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russian Federation
local.description.firstpage799-
local.description.lastpage804-
local.issue51-
local.volume32-
dc.identifier.wos000453278300150-
local.identifier.pure8425113-
local.identifier.eid2-s2.0-85058184323-
local.identifier.wosWOS:000453278300150-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.463.pdf519,49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.