Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTarasyev, A.en
dc.contributor.authorUsova, A.en
dc.date.accessioned2020-10-20T16:34:50Z-
dc.date.available2020-10-20T16:34:50Z-
dc.date.issued2018-
dc.identifier.citationTarasyev A. Robust methods for stabilization of Hamiltonian systems in economic growth models / A. Tarasyev, A. Usova. — DOI 10.1016/j.ifacol.2018.11.344 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 7-12.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.344pdf
dc.identifier.other1good_DOI
dc.identifier.other7b45f990-2b12-401e-be34-d25db3a61517pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058235073m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92214-
dc.description.abstractThe paper discusses the existence of a linear manifold in a vicinity of a steady state for stabilization of the Hamiltonian systems arising in optimal control problems for economic growth models. It is shown that such stable manifold exists for almost all possible values of model parameters guaranteeing the existence of a steady state. Research is based on the qualitative analysis of the Hamiltonian dynamics, which plays a key role for investigating the asymptotic behavior of optimal trajectories. A procedure is proposed for stabilization of the Hamiltonian system, whose trajectories converge to equilibrium and approximate the optimal solution with the quadratic accuracy at a vicinity of the steady state. Basing on properties of the Hamiltonian matrices, the classification of steady states is provided and the sensitivity analysis for identification of their character is implemented with respect to model parameters. The proposed approach is applied to the model dealing with dynamic optimization of the resource productivity. © 2018en
dc.description.sponsorship18–01–00221aen
dc.description.sponsorshipThe paper is supported by Russin Foundation for Basic Research (Project No. 18–01–00221a).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectGROWTH MODELSen
dc.subjectHAMILTONIAN SYSTEMen
dc.subjectOPTIMAL CONTROLen
dc.subjectSTABILIZATIONen
dc.subjectSTABLE MANIFOLDen
dc.subjectECONOMICSen
dc.subjectOPTIMAL CONTROL SYSTEMSen
dc.subjectSENSITIVITY ANALYSISen
dc.subjectSTABILIZATIONen
dc.subjectECONOMIC GROWTH MODELSen
dc.subjectGROWTH MODELSen
dc.subjectHAMILTONIAN SYSTEMSen
dc.subjectOPTIMAL CONTROL PROBLEMen
dc.subjectOPTIMAL CONTROLSen
dc.subjectOPTIMAL TRAJECTORIESen
dc.subjectRESOURCE PRODUCTIVITYen
dc.subjectSTABLE MANIFOLDen
dc.subjectHAMILTONIANSen
dc.titleRobust methods for stabilization of Hamiltonian systems in economic growth modelsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi37208002-
dc.identifier.doi10.1016/j.ifacol.2018.11.344-
dc.identifier.scopus85058235073-
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, S. Kovalevskaya str. 16, Ekaterinburg, 620990, Russian Federation
local.affiliationUral Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.affiliationUniversity of Western Ontario, 1151 Richmond Street London, Ontario, N6A 3K7, Canada
local.contributor.employeeTarasyev, A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, S. Kovalevskaya str. 16, Ekaterinburg, 620990, Russian Federation, Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeUsova, A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, S. Kovalevskaya str. 16, Ekaterinburg, 620990, Russian Federation, University of Western Ontario, 1151 Richmond Street London, Ontario, N6A 3K7, Canada
local.description.firstpage7-
local.description.lastpage12-
local.issue51-
local.volume32-
dc.identifier.wos000453278300003-
local.identifier.pure8425015-
local.identifier.eid2-s2.0-85058235073-
local.fund.rffi18-01-00221-
local.identifier.wosWOS:000453278300003-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.344.pdf460,25 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.