Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/91960
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorCrescenzi, F.en
dc.contributor.authorGianni, B.en
dc.contributor.authorFrancesca, G.en
dc.date.accessioned2020-10-19T10:44:59Z-
dc.date.available2020-10-19T10:44:59Z-
dc.date.issued2016-
dc.identifier.citationCrescenzi F. Comparing small area techniques for estimating poverty measures: the case study of Austria and Spain / F. Crescenzi, B. Gianni, G. Francesca. – DOI 10.17059/2016-2-6. – Текст : электронный // Экономика региона. — 2016. — Том 12, выпуск 2. — С. 396-404.ru
dc.identifier.issn2411-1406online
dc.identifier.issn2072-6414print
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84979964116&doi=10.17059%2f2016-2-6&partnerID=40&md5=cc15510f6316934823891951e35d8183m
dc.identifier.otherWOS:000401303900006wos
dc.identifier.urihttp://elar.urfu.ru/handle/10995/91960-
dc.description.abstractThe Europe 2020 Strategy has formulated key policy objectives or so-called "headline targets" which the European Union as a whole and Member States are individually committed to achieving by 2020. One of the five headline targets is directly related to the key quality aspects of life, namely social inclusion; within these targets, the European Union Statistics on Income and Living Condition (EU-SILC) headline indicators atriskof-poverty or social exclusion and its components will be included in the budgeting of structural funds, one of the main instruments through which policy targets are attained. For this purpose, Directorate-General Regional Policy of the European Commission is aiming to use sub-national/regional level data (NUTS 2). Starting from this, the focus of the present paper is on the "regional dimension" of well-being. We propose to adopt a methodology based on the Empirical Best Linear Unbiased Predictor (EBLUP) with an extension to the spatial dimension (SEBLUP); moreover, we compare this small area technique with the cumulation method. The application is conducted on the basis of EU-SILC data from Austria and Spain. Results report that, in general, estimates computed with the cumulation method show standard errors which are smaller than those computed with EBLUP or SEBLUP. The gain of pooling SILC data over three years is, therefore, relevant, and may allow researchers to prefer this method.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Economics, Ural Branch of the Russian Academy of Sciencesen
dc.publisherИнститут экономики Уральского отделения РАНru
dc.relation.ispartofЭкономика региона. 2016. Том 12, выпуск 2ru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectAUSTRIAen
dc.subjectCUMULATIONen
dc.subjectEU "HEADLINE TARGETS"en
dc.subjectINEQUALITYen
dc.subjectNUTS-2en
dc.subjectPOVERTYen
dc.subjectREGIONAL LEVELen
dc.subjectSEBLUPen
dc.subjectSILCen
dc.subjectSMALL AREA ESTIMATIONen
dc.subjectSPAINen
dc.titleComparing small area techniques for estimating poverty measures: the case study of Austria and Spainen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.17059/2016-2-6-
dc.identifier.scopus84979964116-
local.description.firstpage396-
local.description.lastpage404-
local.issue2-
local.volume12-
dc.identifier.wos000401303900006-
local.identifier.eid2-s2.0-84979964116-
Располагается в коллекциях:Economy of Regions

Файлы этого ресурса:
Файл Описание РазмерФормат 
2016_12_2_006.pdf902,02 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.